

Lecture Notes in Computer Science 4540
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Silvia Nittel Alexandros Labrinidis
Anthony Stefanidis (Eds.)

GeoSensor
Networks

Second International Conference, GSN 2006
Boston, MA, USA, October 1-3, 2006
Revised Selected and Invited Papers

13

Volume Editors

Silvia Nittel
University of Maine
Department of Spatial Information Science and Engineering
National Center for Geographic Information and Analysis
Orono, ME 044673, USA
E-mail: nittel@spatial.maine.edu

Alexandros Labrinidis
University of Pittsburgh
Department of Computer Science
Advanced Data Management Technologies Laboratory
Pittsburgh, PA, 15260, USA
E-mail: labrinid@cs.pitt.edu

Anthony Stefanidis
George Mason University
Department of Geography and Geoinformation Science
Fairfax, VA 22030, USA
E-mail: astefani@gmu.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.3, C.2.4, J.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-79995-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79995-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12327874 06/3180 5 4 3 2 1 0

Preface

This volume serves as the post-conference proceedings for the Second GeoSensor
Networks Conference that was held in Boston, Massachusetts in October 2006. The
conference addressed issues related to the collection, management, processing, analy-
sis, and delivery of real-time geospatial data using distributed geosensor networks.
This represents an evolution of the traditional static and centralized geocomputational
paradigm, to support the collection of both temporally and spatially high-resolution,
up-to-date data over a broad geographic area, and to use sensor networks as actuators
in geographic space. Sensors in these environments can be static or mobile, and can be
used to passively collect information about the environment or, eventually, to actively
influence it.

The research challenges behind this novel paradigm extend the frontiers of tradi-
tional GIS research further into computer science, addressing issues like data stream
processing, mobile computing, location-based services, temporal-spatial queries over
geosensor networks, adaptable middleware, sensor data integration and mining, auto-
mated updating of geospatial databases, VR modeling, and computer vision. In order
to address these topics, the GSN 2006 conference brought together leading experts in
these fields, and provided a three-day forum to present papers and exchange ideas.

The papers included in this volume are select publications, corresponding to ex-
tended versions of papers presented at the conference, and a few additional invited
contributions; all papers went through a rigorous refereeing process. More information
about the scientific background of geosensor networks in general and of the papers
included in this volume in particular may be found in the Introduction chapter.

We greatly appreciate the many people who made this happen. Specifically, we
would like to acknowledge the support of NSF, through the Sensor Science Engineer-
ing and Informatics (SSEI) IGERT program at the University of Maine (DGE-
0504494), and especially Kate Beard, the principal investigator. We would also like to
thank the University of Maine and the University of Pittsburgh for their support. From
the University of Pittsburgh, we would especially like to thank George Klinzing, the
Vice Provost for Research for his support of the GSN 2006 conference. We would
also like to acknowledge the support of StreamBase. Last, but not least, we would like
to thank everybody that helped in the organization of the GSN 2006 conference and
the production of this volume. In particular, we would like to thank Blane Shaw, the
authors and the participants of the conference, the Program Committee members and
the Springer staff for their help.

March 2008 Silvia Nittel
 Alexandros Labrinidis

 Anthony Stefanidis

Workshop Organization

Organizers

Silvia Nittel, University of Maine, USA
Alexandros Labrinidis, University of Pittsburgh, USA
Anthony Stefanidis, George Mason University, USA

Program Committee

Karl Aberer, EPFL, Switzerland
Kate Beard, University of Maine, USA
Alastair Beresford, University of Cambridge, UK
Phillippe Bonnet, DIKU, Denmark
Ugur Cetintemel, Brown University, USA
Isabel Cruz, University of Illinois at Chicago, USA
Sylvie Daniel, Universite Lavel, Canada
Amol Deshpande, University of Maryland, USA
Matt Duckham, University of Melbourne, Australia
Dina Goldin, University of Connecticut, USA
Mike Goodchild, UC Santa Barbara, USA
Joe Hellerstein, UC Berkeley, USA
Christopher Jaynes, University of Kentucky, USA
Vana Kalogeraki, University of Riverside, USA
Nick Koudas, University of Toronto, Canada
Antonio Krueger, University of Muenster, Germany
Lars Kulik, University of Melbourne, Australia
Sam Madden, MIT, USA
Allan McEachren, Penn State, USA
George Percivall, Open Geospatial Consortium, USA
Dieter Pfoser, CTI, Greece
Mirek Riedewald, Cornell University, USA
Simonas Saltenis, Aalborg University, Denmark
Jochen Schiller, Free University Berlin, Germany
Mubarak Shah, University of Central Florida, USA
Cyrus Shahabi, USC, USA
Yoh Shiraishi, University of Tokyo, Japan
Andrew Terhorst, CSIR Satellite Applications Centre, South Africa
Yoshito Tobe, Tokyo Denki University, Japan
Niki Trigoni, Birkbeck, University of London, UK

 Organization VIII

Agnes Voisard, Fraunhofer ISST and FU Berlin, Germany
Peter Widmayer, ETHZ, Switzerland
Stephan Winter, University of Melbourne, Australia
Jun Yang, Duke University, USA
Vladimir Zadorozhny, University of Pittsburgh, USA
Guoqing Zhou, Old Dominion University, USA

Table of Contents

Introduction . 1
Silvia Nittel, Alexandros Labrinidis, and Anthony Stefanidis

Data Acquisition and Processing

Impact of Drifter Deployment on the Quality of Ocean Sensing 9
Konstantinos P. Ferentinos, Niki Trigoni, and Silvia Nittel

Efficient Data Collection and Selective Queries in Sensor Networks 25
Lars Kulik, Egemen Tanin, and Muhammad Umer

Exploiting Spatio-temporal Correlations for Data Processing in Sensor
Networks . 45

Antonios Deligiannakis and Yannis Kotidis

Load Management and High Availability in the Borealis Distributed
Stream Processing Engine . 66

Nesime Tatbul, Yanif Ahmad, Uğur Çetintemel, Jeong-Hyon Hwang,
Ying Xing, and Stan Zdonik

Knowledge Aquisition and Data Storage in Mobile GeoSensor
Networks . 86

Peggy Agouris, Dimitrios Gunopulos, Vana Kalogeraki, and
Anthony Stefanidis

Continuous Spatiotemporal Trajectory Joins . 109
Petko Bakalov and Vassilis J. Tsotras

Data Analysis and Integration

Data-Centric Visual Sensor Networks for 3D Sensing 131
Mert Akdere, Uğur Çetintemel, Daniel Crispell, John Jannotti,
Jie Mao, and Gabriel Taubin

A Vision for Cyberinfrastructure for Coastal Forecasting and Change
Analysis . 151

Gagan Agrawal, Hakan Ferhatosmanoglu, Xutong Niu,
Keith Bedford, and Ron Li

OGC R© Sensor Web Enablement: Overview and High Level
Architecture . 175

Mike Botts, George Percivall, Carl Reed, and John Davidson

X Table of Contents

Linking Geosensor Network Data and Ontologies to Support
Transportation Modeling . 191

Kathleen Stewart Hornsby and Kraig King

Applications

An Operational Real-Time Ocean Sensor Network in the Gulf of
Maine . 213

Neal R. Pettigrew, Collin S. Roesler, Francois Neville, and
Heather E. Deese

Using the Sensor Web to Detect and Monitor the Spread of Vegetation
Fires in Southern Africa . 239

Andrew Terhorst, Deshendran Moodley, Ingo Simonis, Philip Frost,
Graeme McFerren, Stacey Roos, and Frans van den Bergh

Peer-to-Peer Shared Ride Systems . 252
Yun Hui Wu, Lin Jie Guan, and Stephan Winter

Author Index . 271

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 1–6, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Introduction to Advances in Geosensor Networks

Silvia Nittel1, Alexandros Labrinidis2, and Anthony Stefanidis3

1 Department of Spatial Information Science and Engineering
University of Maine Orono, ME 04469
nittel@spatial.maine.edu
2 Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

labrinid@cs.pitt.edu
3 Department of Geography and Geoinformation Sciences

George Mason University
Fairfax, VA 22030

astefani@gmu.edu

Advances in microsensor technology as well as the development of miniaturized
computing platforms enable us to scatter numerous untethered sensing devices in hard
to reach terrains, and continuously collect geospatial information in never before seen
spatial and temporal scales. These geosensor network technologies are revolutionizing
the way that geospatial information is collected, analyzed and integrated, with the
geospatial content of the information being of fundamental importance. Analysis and
event detection in a geosensor network may be performed in real-time by sensor
nodes, or off-line in several distributed, in-situ or centralized base stations.

A large variety of novel applications for geosensor networks have already emerged.
For example, real-time event detection of toxic gas plumes in open public spaces is
crucial for public safety, while monitoring the progression of an oil spill is environ-
mentally valuable. At the same time, more sophisticated applications are becoming
feasible for the first time, for example, people using mobile phones equipped with
microsensors and short-range communication to collect, exchange, and analyze local
information with each other, whether it be about the freshness of produce in a super-
market, or the presence of influenza viruses in the air, or the presence of explosives at an
airport. Geosensor networks may find applications in diverse fields, such as environ-
mental monitoring (e.g., habitat observation and preservation, ocean and coastal
monitoring), precision agriculture and fisheries, ad-hoc mobile computing for
transportation, or surveillance and battlefield situations.

A geosensor network can loosely be defined as a sensor network that monitors
phenomena in geographic space. Geographic space can range in scale from the
confined environment of a room to the highly complex dynamics of an ecosystem
region. Nodes in the network are static or mobile, or attached to mobile objects (e.g.,
on buses) or used by humans (e.g., cell phones). For example, cameras and GPS
sensors on-board static or mobile small-form, mobile or stationary platforms have the
ability to provide continuous streams of geospatially-rich information. Today, these
types of geosensor networks can range in scale from a few cameras monitoring traffic
to thousands of nodes monitoring an entire ecosystem.

2 S. Nittel, A. Labrinidis, and A. Stefanidis

Over the last 10 years, research efforts have taken place to develop the basic
hardware infrastructure for small-scale sensor network systems consisting of large
numbers of small, battery-driven sensor nodes that collaborate unattended and are
self-organizing on tasks, and communicate via short-range radio frequency with
neighboring nodes. Operating system software for these devices is available in the
open source domain today, and the basic strategies of deploying sensor networks have
a solid foundation.

Many challenges for geosensor networks still exist. The main challenge of sensor
networks is to program the sensor nodes as a single, task-oriented computational
infrastructure, which is able to produce globally meaningful information from raw
local data obtained by individual sensor nodes. Another challenge is to integrate the
sensor network platforms with existing, large-scale sensors such are remote sensing
instrument or large, stationary ocean buoys, and process the information in real-time
using a data streaming paradigm. Overall, the current research problems are centered
at data management in general. Data management challenges for geosensor network
applications can be divided into the areas of basic data querying, managing, and
collection, which is today researched in the database community, and the more
advanced, higher-level data modeling and formal data representation issues as well as
data integration strategies, which are novel topics in spatial information science.

The spatial aspects of the overall technology are important on several (abstraction)
levels of a geosensor network, as the concepts of space, location, topology, and
spatio-temporal events are modeled on various abstraction levels. For example, the
hardware and communication layers handle the physical space of sensor deployment,
and communication topologies. The database layer generates execution plans for
spatio-temporal queries that relate to sensor node locations and groups of sensors.
Data representation and modeling deals with the relation between collected raw
sensor data as fields and phenomena in geographic space.

The papers collected in this volume represent key research areas that are
fundamental in order to realize the full potential of the emerging geosensor network
paradigm. They cover the spectrum from low-level energy consumption issues at the
individual sensor level to the high-level abstraction of events and ontologies or
models to recognize and monitor phenomena using geosensor networks. We tried to
cluster them across two separate research areas, namely data acquisition and
processing, and data analysis and integration. This separation is to a certain extent
arbitrary, as most papers address challenges that permeate across different research
areas. Additionally, to better illustrate the complexity of transferring research into
practice, we have also included three papers representing the diversity of geosensor
network applications.

Section 1: Data Acquisition and Processing

The first section of this book is dedicated to papers that deal with data acquisition and
processing challenges in geosensor networks, mostly on the sensor nodes themselves,
or even within the sensor network. Since sensor networks depend on in-network
processing to preserve energy and deal with the restricted communication bandwidth
between sensor nodes, the challenge exists to come up with intelligent data collection
strategies. Another challenge is the actual deployment strategy for sensor nodes, since

 Introduction to Advances in Geosensor Networks 3

they are likely scattered in the area of interest, but must be able to achieve network
connectivity for all nodes. This also applies for mobile sensor networks, i.e. networks
in which one, or more nodes are mobile.

Regarding sensor deployment, the paper of Ferentinos, Trigoni, and Nittel is
addressing mobile sensor network data acquisition in a turbulent environment, where
sensor nodes move involuntarily. The motivating application is ocean current tracking
using a network of sensors that are drifting on the sea surface.

Energy management remains a crucial issue in sensor network deployment, with in-
network communication being the major energy-consuming activity. Addressing this
issue, the paper of Kulik, Tanin, and Umer is presenting a novel algorithm for queries in
sub-network structures. Such queries need to reference only parts of a sensor network,
thus offering opportunities to optimize data collection paths while minimizing energy
consumption. Motivated by the same goal, namely the implementation of energy-
efficient query processing in sensor networks, Deligiannakis and Kotidis present a
comparative analysis of several data reduction techniques, ranging in scope from the
simple monitoring of a node’s variance to the identification of spatiotemporal
correlations among nodes.

Processing the tsunami of data generated by sensor networks presents a host of well-
known challenges that overwhelm classic database management systems, with their
store-then-query processing paradigm. Data stream processing systems (DSPS) have
been introduced to handle substantial volumes of data in a variety of applications,
ranging from financial data to environmental monitoring. Typical queries in a DSPS are
registered ahead of time; these queries are continuous, constantly being evaluated against
a never-ending stream of incoming data to generate output streams. Accordingly, they are
highly suitable for the processing requirements of sensor network applications. The paper
of Tatbul, Ahmad, Cetintemel, Hwang, Xing, and Zdonik addresses the scalability and
high availability aspects of a distributed stream processing system through the Borealis
prototype. In particular, the authors discuss how to dynamically modify data and query
properties of Borealis without disrupting the system’s runtime operation, and how to
adapt Borealis to tolerate changes and failures.

With the current trend of moving from spatial to spatio-temporal analysis, mobility
is increasingly being seen as a first-class citizen in sensor networks. Addressing this
issue, the paper by Agouris, Gunopulos, Kalogeraki, and Stefanidis introduces a
spatio-temporal framework to support object and sensor mobility, inspired by active
surveillance applications using optical sensors (video and still cameras). The key
challenge they address is how to track moving objects using a small network of
sensors that are also mobile (e.g., cameras on-board unmanned aerial vehicles). In the
process, the authors touch upon issues related to the modeling of spatiotemporal
information (e.g., the movement of a car), the development of similarity metrics to
compare spatiotemporal activities (e.g., the movement of two different cars), and the
management of a network to optimally track moving objects (e.g., repositioning
sensors in order to follow certain activities). Continuing in the same context, the paper
by Bakalov and Tsotras presents a novel indexing scheme for streaming spatio-
temporal data, and efficient algorithms for evaluating spatio-temporal trajectory join
queries, which used to identify a set of objects with similar behavior over a query-
specified time interval. This supports queries about previous states of the spatio-
temporal stream, provides approximations for object trajectories, and supports
incremental query evaluation.

4 S. Nittel, A. Labrinidis, and A. Stefanidis

Section 2: Data Analysis and Integration

The second section of this book is dedicated to papers that deal with data analysis and
integration challenges in geosensor networks, focusing especially on issues like 3D
visual analysis, geosensor webs and standardization/interoperability, and higher-level
semantic modeling.

Picking up the thread that ended the first section of this book, with camera-based
surveillance, we have the paper of Akdere, Cetintemel, Crispell, Jannotti, Mao, and
Taubin on visual sensor networks for 3D sensing. It presents the concept of a “virtual
view” as a novel query mechanism to mediate access to distributed image data in a
video sensor network. The ultimate objective is to establish efficient and effective
networks of smart cameras that can process video data in real time, extracting features
and 3D geometry in a collaborative manner.

Today, many traditional, larger-scale sensor field stations are already in place.
With ubiquitous wireless communication networks, data can be retrieved via satellite
links in real-time. Thus, the overall data collection paradigm in sensor data
management is changing to a real-time scenario, and ultimately sensor networks will
be integrated with larger-scale field stations and remote sensing imagery. Calling this
scenario the Geosensor Web, we envision that access to sensor data will be as uniform
and easy as access to data on the World Wide Web today. However, several problems
exist that have to be addressed first before enabling such a vision. The article by
Agrawal, Ferhatosmanoglu, Niu, Bedford, and Li focuses on the first challenge for
sensor data integration, i.e. a framework comprising of real-time data streams from
live sensors, a stream-based middleware for on-the-fly sensor data integration and
analysis, linking it with ontologies and stored domain knowledge. Their driving
application area is coastal forecasting and change analysis.

Viewing practical interoperable sensor data integration, industry-supported
standards for access and sensor data presentation protocols are key. The paper by
Botts, Percivall, Reed, and Davidson presents the Open Geospatial Consortium’s
(OGC) standard with regard to the standardized architecture for Sensor Web
Enablement. Today, this standard is used for interoperable access to remote sensing
instruments; however, it will become a highly important, enabling mechanism for the
overall Geosensor Web. Many open research problems can still be found in the area
of real-time sensor data integration such as novel meta data, access rights,
copyright/privacy issues, uniform scale representation, scalability, and others.

Looking at the flood of collected and integrated real-time sensor data, it becomes
clear that the cognitive aspects of users must be addressed and that higher-level,
semantically rich data representation models and query languages are necessary.
Users need to be able to express higher-level events such as “Track the toxic cloud,
and report any topological changes” easily. This type of data representation model is
also necessary to integrate sensor data with available domain knowledge and/or
historic data.

Another mechanism for high-level and interoperable data representation of low-
level sensor data are ontologies. Hornsby and King investigate the supporting role of
ontologies for geosensor network data. In particular, they explore methods to link
ontologies with real-time geosensor networks in order to augment the collected data
with generalization or specialization relations from an ontology. For example, a
geosensor network can observe moving cars on a freeway, tracking their location via

 Introduction to Advances in Geosensor Networks 5

a car identifier. The car identifier links the car to a classification scheme stored in a
database; here, vehicles can be classified as military support trucks or medical support
vehicles. Hornsby and King have implemented a mechanism to associate data values
from the geosensor database with classes in the ontology, and support generalization
or specialization queries based on the ontology.

Section 3: Applications

Today, the applications for geosensor networks are appearing in different domains
ranging from habitat monitoring, watershed management, environmental pollution
monitoring, deep sea explorations to monitoring food safety in South Africa and
precision agriculture for large vineyards in Southern Australia. One can observe that a
mindset change in the application areas is taking place. Scientists as well as
practitioners are aware of technology advancements, which provide means for real-
time availability of observational data and allowing existing sensor platforms to be
networked. Networking sensor platforms of different types and scale provide an
increased capability to correlate spatio-temporal information covering an entire region
of interest. This paradigm shift from post-event, estimation based, historic data
analysis to real-time, sensor-rich event detection and monitoring is fundamental in
environmental applications. Adding small-scale geosensor network technology will
change the awareness of the potential data scale over the next decade.

The paper by Pettigrew, Roessler, Neville, and Deese presents the GoMOOS
project in the Gulf of Maine. Currently, the long-running coastal observing project
consists of several, large-scale buoys distributed in the Gulf of Maine. Each buoy has
several surface and underwater sensors attached, and uploads collected information
via satellite link to a central computer. This information is used to model sea surface
currents using a neural network approach since the available information currently is
point based, thus, the currents in large areas need to be coarsely estimated. This
project also relates to the paper by Trigoni, Ferentinos and Nittel in the second section
discussing the deployment of a network of untethered ocean drifters to investigate the
ocean currents directly, and potential collection information about nutrients and algae.

The next paper, by Terhorst, Moodley, Simonis, Frost, McFerren, Roos and van
den Bergh, describes the deployment of another environmental monitoring
application, targeted at detecting vegetation fires over Africa. Vegetation fires that
burn over high-voltage electricity transmission lines can create line faults, which can
disrupt regional electricity supply. Improving detection response time (ideally,
making it real-time) can help mitigate the impact of such wild fires. Terhorst et al
present the architecture of their Advanced Fire Information System and illustrate how
a combination of two separate satellite systems with different characteristics can lead
to improvement in detection accuracy.

Another interesting application area of geosensor networks is intelligent
transportation systems. Location-based techniques have been used for the last decade
to acquire information about the surroundings of the current location of a car or a
pedestrian. Assuming the existence of sensors on devices as well as the ability for
short-range, ad-hoc communication of nodes in close spatial proximity, a new range
of application becomes possible. For example, several nodes collecting sensor
information about their environment can collaborate and exchange, aggregate and

6 S. Nittel, A. Labrinidis, and A. Stefanidis

forward this information. Often, sensed information is mostly relevant in the
immediate neighborhood, and becomes less relevant with increasing distance. Wu,
Winter and Guan address an approach to ride sharing using ad-hoc geosensor
networks. Transportation clients, e.g. pedestrians, needing a ride from location l1 to
location l2, request offers from transportation providers nearby. Transportation or ride
providers can be private automobiles, taxis or public transportation. Based on the
offers for complete or partial trips and accounting for the presence of competing
clients, a client node has to strategize on accepting offers to cover the route at hand.

Outlook and Open Issues

The papers collected in this volume clearly demonstrate the interdisciplinary nature of
geosensor networks, and their rapidly emerging potential to revolutionize the way in
which we observe the physical world. There is an increased realization of the need for
accurate and continuous monitoring of our environment. This environment is
characterized by its inherent complexity (e.g., with the evolution of an ecosystem and
the corresponding climate dynamics affecting and affected by human activities) thus
mandating the realization of the potential offered by geosensor network applications.

If we attempt to identify relevant topics that have not yet emerged to the
prominence that they deserve in our community, we can start with the issue of sensor
data privacy. With the requirements to design ultra-light wireless communication
protocols for small-form devices, there is limited room left for advanced encryption
schemes. A related issue is the need for authentication of sensed data. If sensor
networks are deployed in security-sensitive areas, built-in mechanisms need to be
available to provide for such data authentication. A third open issue is data quality.
Mechanisms need to assure that defective or incorrectly calibrated sensors are
excluded from the computation, and that calibration is established individually as well
as collectively before deployment and also continuously later on. Today, many
research efforts in sensor networks are conducted under assumptions derived from the
constraints of current hardware platforms such as the Berkeley motes. Many of these
assumptions such as using radio broadcasting as communication modality or
restricted battery life might not be valid anymore in a few years, and these
assumptions might change completely. Lastly, one observation we can make based on
the current state-of-the-art is that existing approaches to geosensor networks are rather
passive: sensors observe events, and just report/record information. As geosensor
networks become more mature and more pervasive, we expect the level of interaction
between humans, geosensor networks, and the environment to increase dramatically.

Given the many different aspects and challenges of this interdisciplinary field, a
single volume cannot possibly exhaust the emerging research agenda, but we believe
that the papers collected here offer a valuable snapshot of current research, as it was
reflected at the GSN’06 conference. We hope that this volume will serve as a
reference point for new scientists venturing in this area, and hope that we will have
them participate in future GSN conferences.

Data Acquisition and Processing

Impact of Drifter Deployment on the Quality of

Ocean Sensing

Konstantinos P. Ferentinos1, Niki Trigoni2, and Silvia Nittel3

1 Agricultural University of Athens, Athens, Greece
kpf3@cornell.edu

2 University of Oxford, Oxford, UK
niki.trigoni@comlab.ox.ac.uk

3 University of Maine, Orono, USA
nittel@spatial.maine.edu

Abstract. Traditional means of observing the ocean, like fixed moorings
and radar systems, are expensive to deploy and provide coarse-grained
data measurements of ocean currents and waves. In this paper, we ex-
plore the use of an inexpensive wireless mobile ocean sensor network as
an alternative flexible infrastructure for fine-grained ocean monitoring.
Surface drifters are designed specifically to move passively with the flow
of water on the ocean surface and they are able to acquire sensor read-
ings and GPS-generated positions at regular intervals. We view the fleet
of drifters as a wireless ad-hoc sensor network with two types of nodes: i)
a few powerful drifters with satellite connectivity, acting as mobile base-
stations, and ii) a large number of low-power drifters with short-range
acoustic or radio connectivity. We study connectivity and uniformity
properties of the ad-hoc mobile sensor network. We investigate the effect
of deployment strategy. The objective of this paper is to address the fol-
lowing challenge: how can we trade the usage of resources (e.g. number of
drifters, and number of basestations vs. communication range) and which
deployment strategy should be chosen (e.g. grid-like, star-like, etc.) to
minimize energy costs, whilst satisfying application requirements for net-
work connectivity and sensing density. Using simulation and real dataset,
we investigate the effects of deploying drifters with regard to the follow-
ing questions: i) where/when should drifters be placed initially? ii) how
many drifters should initially be deployed?, iii) the effect of the num-
ber of basestations (drifters with satellite connectivity) on the overall
network connectivity, and iv) the optimal communication range of the
basic drifters. Our empirical study provides useful insights on how to
design distributed routing and in-network processing algorithms tailored
for ocean-monitoring sensor networks.

1 Introduction

Marine microorganisms such as phytoplankton are exceedingly small (2-3 mm),
and coastal ocean currents are a significant factor influencing the transport and
circulation of these marine microorganisms. Establishing a detailed model of

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 9–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

10 K.P. Ferentinos, N. Trigoni, and S. Nittel

ocean currents in a relatively small area such as a bay or a specific coastline
is important since currents carry nutrients and potential toxins, which affect
ecosystems and humans in coastal regions. For example, currents can distribute
the Alexandrium fundyense algae during the warm summer months. This type of
algae contaminates shellfish, and can make people who eat the shellfish seriously
ill [7]. Today, the knowledge of the behavior of ocean and coastal currents is
limited, and predicted trajectories of armful algae imbedded in the flow are
inadequate from the point of view of public health.

Today, major ocean currents are established using coastal radar; however, the
information is spatially and temporally coarse, and the gaps need to be filled
in by interpolation techniques. In this paper, we investigate the alternative de-
ployment of a fleet of inexpensive, networked ocean drifters, which are passively
propelled by the currents and report their GPS-based location and trajectories
to the end user.

Today’s available drifter platforms such as [4] are deployed in a singular fash-
ion, and use expensive satellite communication to upload data to a centralized
computer. Satellite communication is high cost, from the standpoint of the equip-
ment price, with regard to energy consumption and also the service fee for the
satellite link service. In this paper, we explore the use of a fleet of inexpensive
drifters as an alternative flexible infrastructure for fine-grained ocean monitor-
ing. We view the fleet of drifters as wireless ad-hoc sensor network with two
types of nodes: i) only a few powerful drifters with satellite connectivity, acting
as mobile basestations, and ii) a large number of low-power, inexpensive drifters
with short-range acoustic or radio connectivity. Our objective is twofold: using a
fleet of small-scale sensor nodes that communicate with each other using lower-
energy acoustic signals instead of a satellite uplink saves large amounts of energy.
Additionally, the fleet provides more detailed information by covering an ocean
region in high density. The passive movement of drifters can be used to derive
actual ocean currents on a detailed scale.

Deploying such a fleet of mobile ad-hoc sensor nodes on the ocean surface is
a novel research problem, both from the perspective of computer science and
oceanography. We have explored communication connectivity and sensing uni-
formity of a fleet of a mobile ad-hoc sensor network using real datasets from
the Liverpool Bay. The challenge is to design, build and deploy drifter plat-
forms that despite involuntary, passive movement over long time periods (up to
3 months) preserve energy power, long-term network connectivity, and sensing
uniformity [5]. The objective of this paper is to address the following challenge:
how can we trade the usage of resources (e.g. number of drifters, and num-
ber of basestations vs. communication range) and which deployment strategy
should be chosen (e.g. grid-like, star-like, etc.) to minimize energy costs, whilst
satisfying application requirements for network connectivity and sensing density.
Using simulation and real dataset, we investigate the effects of deploying drifters
with regard to the following questions: i) where/when should drifters be placed
initially? ii) how many drifters should initially be deployed?, iii) the effect of
the number of basestations (drifters with satellite connectivity) on the overall

Impact of Drifter Deployment on the Quality of Ocean Sensing 11

network connectivity, and iv) the optimal communication range of the basic
drifters. Our empirical study provides useful insights on how to design distributed
routing and in-network processing algorithms tailored for ocean-monitoring sen-
sor networks.

The remainder of the paper is organized as following: in Section 2, we provide
relevant technical background on the current state of the art of ocean sensor
networks, drifter platforms and wireless communication technology for water
environments. In Section 3, we explore the research questions and the approach
of this paper in more detail. Section 4 and Section 5 contain our experimental
results and we conclude with Section 6.

2 Background

In this section, we provide background information about the current state of
the art in ocean observation research. The research can be roughly divided into
deep sea exploration using submarines and ocean bottom sensor platforms and
robots connected by optical fiber cable (e.g. NEPTUNE [6]). Another main re-
search domain is in near-coastal ocean observations using fixed, large moorings
equipped with sensor and satellite connection for data upload. These sensor en-
vironments are extended with coastal radar stations, autonomous gliders, and
research vessels. Our interest in ocean surface drifters is with regard to near-
coastal deployments.

2.1 Ocean Drifters

Today, several projects and platforms for shallow water drifters exist. Initial
larger-scale deployments of drifters were in the Gulf of Mexico and the South-
western Caribbean Sea designed to explore the Gulf Stream in more detail.

Today, the international ARGO project [4] is one of the largest deployments
of drifters in the world oceans. ARGO is an program that began in 2000, and
now the deployment of 3000 profiling drifters is 100% complete. The purpose of
ARGO is to examine the global ocean currents, circulation and air-sea interac-
tion, with the goal of improving climate models and predictions.

The Argo drifter (also called ”Davis Drifter”) was designed to be a surface
level (1 meter below surface) drifter which can report position via the Argos
satellite link-based data collection system. Location determination by GPS is
also available. The unit has a nominal operating life of 9 months. The global
array of 3,000 floats is distributed roughly every 3 degrees (300km).

Currently, drifters are deployed in a singular fashion, and each drifter reports
data via expensive satellite uplink instead to other drifters or data mules (such
as gliders, buoys or ships). The topic of fleets of surface level drifters using
inexpensive acoustic, radio or optical communication is today a interesting, novel
research topic.

Networks of mobile wireless sensor nodes are currently investigated in deep
sea applications such as the NEPTUNE project or in small-scale surface deploy-
ments. For example, the Starbug Aquaflecks and Amour AUV, developed by

12 K.P. Ferentinos, N. Trigoni, and S. Nittel

MIT, are an underwater sensor network platform based on Fleck motes devel-
oped jointly by the Australian Commonwealth Scientific and Research Organi-
zation (CSIRO) and MIT CSAIL [11]. The 4 inch long Aquaflecks are combined
with a mobile Amour AUV, which acts as a data mule to retrieve data from the
different sensor nodes. The Amour AUV uses two types of communication, i.e.
an acoustic modem for long-range communication and optical-modem for short
range. The acoustic modem has a data rate of 220 bits/s over 5 km, while the
optical modem has a throughput of 480bit/s with range of over 200m consuming
4.5mJ/bit.

2.2 Wireless Communication for Ocean Environments

Typically, underwater sensor nodes are connected to a network’s surface station
which connects to the Internet backbone through satellite communication or
an RF link. The sensor nodes located in shallow or surface waters use diverse
wireless communication technologies such as radio, acoustic, optical or electro-
magnetic signals. The different technologies vary with regard to communication
range of the sender, data rate per second (data propagation speed), energy con-
sumption and robustness with regard to noise or interference (such as Doppler
effects) [1].

Radio signals are used in shallow water sensor networks, however, the travel
speed of radio signals through conductive sea water is very low, i.e. about at
a frequency of 30-300Hz. Experiments performed at the University of Southern
California using Berkeley Mica2 Motes have reported to have a transmission
range of 120 cm in underwater at a 433MHz radio transmitter [12]. Optical waves
do not suffer from such high attenuation but are affected by scattering. Also,
transmission of optical signals requires high precision in pointing the narrow
laser beams, which is less practical in water.

Basic underwater acoustic networks (UWA) are the most commonly used
communication media for water-based sensor networks [2,8]. Acoustic communi-
cation is formed by establishing two-way acoustic links between various sensor
nodes. UWA channels, however, differ from radio channels in many respects.
The available bandwidth of the UWA channel is limited, and depends on both
range and frequency; the propagation speed in the UWA channel is five orders of
magnitude lower than that of the radio channel. UWA networks can be distin-
guished into very long range, long, medium, short and very short communication
range. As a rule, the shorter the communication range, the higher the bit rate.
Typical ranges of acoustic modems vary between 10km to 90km in water. Fur-
thermore, acoustic networks can be classified as horizontal or vertical, according
to the direction of the sound wave. There are also differences in propagation
characteristics depending on direction. Furthermore, acoustic signals are subject
to multipath effects [10], large Doppler shifts and spreads, and other nonlinear
effects.

Acoustic operation is affected by sound speed. Overall, the bit rate in water
is about five orders of magnitude lower than in-air transmission. Sound speed is
slower in fresh water than in sea water. In all types of water, sound velocity is

Impact of Drifter Deployment on the Quality of Ocean Sensing 13

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

13

149

5 6 7 8

10 15

1 2 3 4

11 16

12

Fig. 1. Grid and hash deployments of drifters

affected by density (or the mass per unit of volume), which in turn is affected
by temperature, dissolved molecules (usually salinity), and pressure. Today, the
desired information transmission rate in the network is 100bit/s from each node.
The available (acoustic) frequency band is 8-15 kHz. Uncertainty about propa-
gation delays is typical of acoustic communication. Information is transmitted in
packets of 256 bits, and nodes transmit at most 5 packets/h. Typical deployment
of nodes can be as drifters or mounted on the ocean bottom, and separated by
distances of up to 10km [9].

2.3 Data Management for Ocean Sensor Networks

Drifters are deployed to continuously collect data. At minimum, the end user
is interested in the trajectory of the drifter itself since it contains relevant in-
formation about the ocean dynamics in the area covered. Furthermore, drifter
platforms can be equipped with diverse sensors to sample the water. Today,
salinity and temperature sensors are the most commonly used sensors. Drifter
platforms can also carry accelerometers to measure wave speed or water accel-
eration for tsunami detection. Biological sensors detect marine microorganisms
such as algae species and distribution.

Currently, drifters sense, store, and aggregate data locally until it is uploaded
once a day via satellite connection to a centralized computer. Today, point sam-
pling is common; region sampling via several collocated drifters during the same
time period is rare. Typically, local data logger applications are run that contain
limited processing and computing intelligence. Data collection is file-based, and
reported in batch mode.

14 K.P. Ferentinos, N. Trigoni, and S. Nittel

5

9 16

10 6 15

1 2 3 4

714 11

1213
8

Fig. 2. Star deployment of drifters

3 Problem Description

Model assumptions: Consider a set of n drifters D = {d1, . . . , dn} deployed
in the ocean to monitor a coastal area of interest. Let (ti, xi, yi) be the time and
location of initial deployment of drifter di. Drifters are designed to be passively
propelled by local currents, are location-aware (using GPS), and are equipped
with a variety of sensor devices to monitor different properties of the ocean
surface. All drifters have local wireless communication capabilities that allow
them to exchange messages with other drifters within range R 1. A subset of the
drifters (B ⊆ D) also has satellite connectivity, which allows them to propagate
sensor data to oceanographers and other interested users around the globe. We
refer to these special-purpose drifters as mobile base-stations, or simply base-
stations. We thus view the set of drifters as a hierarchical mobile ad hoc network,
wherein simple drifters forward their readings hop-by-hop to one of the mobile
base-stations.

In order to predict drifter movement, we use a dataset CUR of coarse-grained
radar measurements of current speed and current direction. Radar measurements
are taken at regular intervals (e.g. every 1 hour) at various junction points of
a grid spanning the area of interest (e.g. one pair of (speed,direction) measure-
ments per 4km × 4km grid cell). Current speed and direction conditions at all
other locations are estimated using spline two-dimensional interpolation. Based
on these current speed and direction measurements, we evaluate drifter locations
over time, and we use the resulting trajectories as input to our simulations. In
a real setting, drifter trajectories would be derived directly via GPS.

1 In reality, the communication range is not a perfect circle, and the delivery ratio
depends not only on the distance, but on a variety of environmental conditions. We
leave the study of realistic communication models in ocean environments for future
work.

Impact of Drifter Deployment on the Quality of Ocean Sensing 15

Basestations Grid Deployment Hash Deployment Star Deployment

1
2 1,11 1,15 1,11
4 1,6,11,16 1,7,12,14 1,6,11,16
8 1,3,6,8,9,11,14,16 1,3,6,8,10,12,13,15 1,3,6,8,9,11,14,16

Fig. 3. Identifiers of drifters selected as basestations in the grid, hash and star deploy-
ments

Metrics: In this paper, we focus on empirically quantifying two aspects of drifter
behavior: multi-hop connectivity and sensing coverage.
Multi-hop connectivity: This is defined as the percentage of drifters that can reach
at least one of the base-stations on a multi-hop path. Multi-hop connectivity is
useful for quantifying the ability of drifters to relay their readings hop-by-hop
to the end-users through one or more base-stations.
Sensing coverage: We use two metrics of sensing coverage: i) sensing density,
which is the number of connected drifters with multi-hop connectivity within
the area of interest and ii) sensing uniformity, which denotes whether drifters
are uniformly dispersed in the area of interest or congested in a small part of it.
To quantify sensing uniformity, we adopt the definition of MRD (Mean Relative
Deviation) proposed by Ferentinos and Tsiligiridis [3]:

MRD =
∑N

i=1 |ρSi − ρS |
NρS

where N is the number of equally-sized overlapping sub-areas that the entire area
of interest is divided into. Sub-areas are defined by four factors: two that define
their size (length and width) and two that define their overlapping ratio (in the
two dimensions). In the formula above, ρSi is the spatial density of connected
drifters within sub-area i and ρS is the spatial density of connected drifters in
the entire area of interest. Thus, MRD is defined as the relative measure of
the deviation of the spatial density of drifters in each sub-area from the spatial
density of drifters in the entire area of interest. Perfect uniformity (MRD=0) is
achieved when each sub-area has the same spatial density as that of the entire
area of interest, while higher MRD values correspond to lower uniformity levels
of drifters.

Main objectives: Given the set of drifters D deployed at specific times and
locations, the subset of base-stations B and a real dataset of current information
CUR that determines drifter trajectories, we would like to address the following
two questions:

– How does the deployment strategy, which is defined by the positions and
timestamps of drifters when they are first deployed, impact the communica-
tion connectivity and sensing coverage of the fleet of drifters? In particular,
our goal is to determine whether grid-like drifter formations are preferred to
star-like drifter formations. We study this problem in Section 4.

16 K.P. Ferentinos, N. Trigoni, and S. Nittel

– In a specific application framework, engineers will be faced with the question
of how to balance network resources to achieve a certain density of connected
drifters in an area of interest. They will have the option of varying the number
of drifters, the number of basestations or the communication range between
drifters. In this paper, we present a study of how these three factors impact
density of connected drifters (Section 5). Based on this study, engineers can
make informed decisions about how to build a network of drifters, taking
into account the prices of drifters, basestations, or communication devices
with varying ranges.

Real Datasets: In order to empirically address the questions posed before, we
considered a realistic scenario of deploying drifters in the Liverpool Bay (UK).
We used real datasets of surface current measurements monitored in the coastal
area, to infer how drifters would move under the influence of these currents.

The Liverpool Bay data has been provided by the Proudman Oceanographic
Laboratory Coastal Observatory Project, and it was measured by a 12-16MHz
WERA HF radar system, which has been deployed to observe sea surface currents
and waves in Liverpool Bay. In our simulations, we use current direction and
current speed data measured hourly at the center of cells of a 7 × 10 grid.
The size of each grid cell is 4km × 4km, and thus the size of the monitored
area is 28km × 40km. A smaller 5 × 5 grid is considered to be the area of
interest (of size 20km × 20km); recall that among connected drifters we only
count those in the area of interest to measure sensing density, as defined in
Section 3. This is in contrast with multi-hop connectivity, which is the percentage
of all connected drifters, in and out of the area of interest. Current speed and
direction conditions at locations inside the grid (other than the grid junctions)
are estimated using two-dimensional spline interpolation. Drifter locations are
estimated every 5 minutes. Our simulations typically last for 1.5 days, which
corresponds to 432 5-min time-steps.

4 Impact of Deployment Strategy

In our study, we compare the performance of three different deployment strate-
gies. In all of them, we assume that four boats start deploying drifters simul-
taneously, at time t=0, and in 1-hour intervals. Four drifters are deployed per
boat (at times t, t+1hr, t+2hr and t+3hr). The initial positions and routes of
the four boats vary across different strategies:

– Grid deployment: Four horizontal lines (left deployment in Figure 1)
– Hash deployment: Two horizontal parallel lines and two vertical parallel lines

(right deployment in Figure 1)
– Star deployment : Two pairs of perpendicular lines in a 45-degree rotation

(four lines in star formation in Figure 2)

In all three deployments, boats scan the same square area of interest of size
20km × 20km. Each boat starts deploying drifters along a line as shown in

Impact of Drifter Deployment on the Quality of Ocean Sensing 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400 450

m
ul

ti-
ho

p
co

nn
ec

tiv
ity

5-min time-step

grid depl. with 1 basestation
hash depl. with 1 basestation
star depl. with 1 basestation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400 450

m
ul

ti-
ho

p
co

nn
ec

tiv
ity

5-min time-step

grid depl. with 2 basestations
hash depl. with 2 basestations
star depl. with 2 basestations

Fig. 4. Multi-hop connectivity with 1 and 2 basestations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400 450

m
ul

ti-
ho

p
co

nn
ec

tiv
ity

5-min time-step

grid depl. with 4 basestations
hash depl. with 4 basestations
star depl. with 4 basestations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400 450

m
ul

ti-
ho

p
co

nn
ec

tiv
ity

5-min time-step

grid depl. with 8 basestations
hash depl. with 8 basestations
star depl. with 8 basestations

Fig. 5. Multi-hop connectivity with 4 and 8 basestations

Figures 1 and 2. The initial positions of the four boats, where the first four
drifters are deployed, are illustrated by an arrow. It takes 1 hour for each boat
to cross a distance of 4km where the next drifter is deployed.

Some of these drifters have satellite connectivity and act as mobile bases-
tations. Table 3 shows which particular drifters are selected as basestations in
scenarios with 1, 2, 4 and 8 basestations.

To compare the three deployment strategies we use the three metrics intro-
duced in Section 3, namely multi-hop connectivity, sensing density and sensing
uniformity (MRD: Mean Relative Deviation). We are interested in investigating
which is the preferred deployment strategy in terms of connectivity and sensing,
and how our decision may be affected by the number of basestations.

Multi-hop connectivity: Figures 4 and 5 show the behavior of the three de-
ployment strategies as time elapses and as we increase the number of drifters
acting as basestations. Notice that in scenarios with very few basestations, the
grid deployment exhibits very low connectivity. In fact, only basestations man-
age to get readings through to the users using their satellite links, whereas all
other drifters remain disconnected. The low connectivity is due to the fact that

18 K.P. Ferentinos, N. Trigoni, and S. Nittel

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400 450

se
ns

in
g

de
ns

ity

5-min time-step

grid depl. with 1 basestation
hash depl. with 1 basestation
star depl. with 1 basestation

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400 450

se
ns

in
g

de
ns

ity

5-min time-step

grid depl. with 2 basestations
hash depl. with 2 basestations
star depl. with 2 basestations

Fig. 6. Number of connected drifters in the area of interest (sensing density) with 1
and 2 basestations

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400 450

se
ns

in
g

de
ns

ity

5-min time-step

grid depl. with 4 basestations
hash depl. with 4 basestations
star depl. with 4 basestations

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400 450

se
ns

in
g

de
ns

ity

5-min time-step

grid depl. with 8 basestations
hash depl. with 8 basestations
star depl. with 8 basestations

Fig. 7. Number of connected drifters in the area of interest (sensing density) with 4
and 8 basestations

the communication range (4 km) is equal to the distance between the locations
of two consecutive drifters as they are initially deployed by a boat. Surprisingly
the grid deployment exhibits very high multi-hop connectivity when 4 or 8 of
the 16 drifters act as basestations.

The connectivity of the hash deployment is 10 times higher than that of the
grid deployment in the case of 1 basestation, and 3 times higher in the case
of 2 basestations. However, the relative difference between the two deployment
strategies diminishes as we further increase the number of basestations (to 4 or
more basestations).

The star deployment is shown to exhibit the highest multi-hop connectivity
in most cases. Observe that the connectivity achieved with 1 basestation is very
similar to that achieved with 8 basestations. This consistent behavior of the star
deployment makes it very desirable, since it enables oceanographers to obtain
readings from most drifters without using many expensive drifters with satellite
connectivity (basestations). Before selecting the star deployment as the preferred
strategy, we should first investigate whether it is equally efficient in terms of
sensing density and sensing uniformity.

Impact of Drifter Deployment on the Quality of Ocean Sensing 19

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450

M
R

D
 (

se
ns

in
g

un
ifo

rm
ity

)

5-min time-step

grid depl. with 1 basestation
hash depl. with 1 basestation
star depl. with 1 basestation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450

M
R

D
 (

se
ns

in
g

un
ifo

rm
ity

)

5-min time-step

grid depl. with 2 basestations
hash depl. with 2 basestations
star depl. with 2 basestations

Fig. 8. Drifter uniformity in the area of interest (MRD) with 1 and 2 basestations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450

M
R

D
 (

se
ns

in
g

un
ifo

rm
ity

)

5-min time-step

grid depl. with 4 basestations
hash depl. with 4 basestations
star depl. with 4 basestations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450

M
R

D
 (

se
ns

in
g

un
ifo

rm
ity

)

5-min time-step

grid depl. with 8 basestations
hash depl. with 8 basestations
star depl. with 8 basestations

Fig. 9. Drifter uniformity in the area of interest (MRD) with 4 and 8 basestations

Sensing coverage: We examine two distinct metrics of sensing coverage, namely
sensing density in Figures 6 and 7 and sensing uniformity in Figures 8 and 9. Re-
call that sensing density is the number of drifters within a region of interest that
are connected through a multi-hop path to at least one of the basestations. In
our experiments, the area of interest has size 20km×20km, and each deployment
has the same center as the area of interest.

Figures 6 and 7 show that for all deployment strategies, the number of con-
nected drifters that remain within the area of interest decreases over time. It
takes almost 400 time-steps (400 × 5 = 2000 mins) for most drifters to be pas-
sively propelled by currents out of the area of interest.

In scenarios with few (1 or 2) basestations, the hash deployment yields higher
density than the grid deployment. The gap, however, decreases significantly as we
increase the number of basestations. The star deployment significantly outper-
forms the other two strategies in all cases, irrespective of the number of bases-
tations. The density of drifters in the star deployment decreases more slowly
than in the other two strategies up to time-step 300. Shortly after, we observe a
very sharp descent of the density in the star deployment, until all drifters move
outside the area of interest.

20 K.P. Ferentinos, N. Trigoni, and S. Nittel

Observe that in scenarios with many basestations (>= 4), our results on multi-
hop connectivity are very different from our results on sensing density. More
specifically, in terms of multi-hop connectivity, the three deployment strategies
have similar performance, whereas in terms of sensing density, the star deploy-
ment outperforms the others for prolonged time periods. This means that the
star deployment places drifters so that most of them remain within the area of
interest longer than if we had used grid or hash deployments.

The next question that arises is whether connected drifters remain uniformly
dispersed in the area of interest, or whether they are clustered in small parts
of the area. Figures 8 and 9 illustrate the performance of the three deployment
strategies in terms of MRD (Mean Relative Deviation), which is a metric of
sensing uniformity. The lower the MRD value the more uniform the spatial dis-
tribution of connected drifters. Recall that in scenarios with 1 or 2 basestations,
the grid and hash deployments perform very poorly in terms of sensing density
(Figures 6 and 7). Very few connected drifters are in the area of interest, and it
is of little interest to compare the algorithms in terms of sensing uniformity. In
scenarios with 4 and 8 basestations, the MRD values of the three deployment
strategies fluctuate between values 0.5 and 2, with the grid deployment exhibit-
ing slightly higher uniformity (lower MRD) than the other two approaches.

Summary of results: The star deployment exhibits significantly higher multi-
hop connectivity than the hash and grid deployments in scenarios with few
basestations (1 or 2 basestations out of 16 drifters). The three strategies behave
similarly in scenarios with 4 or more basestations. The star deployment yields
higher sensing density than the other two strategies in all cases. The grid deploy-
ment is slightly better in terms of uniformity, however, this benefit is too small
to counteract the superiority of the star deployment in terms of sensing density.
Our results are based on a dataset of real radar readings of current direction
and velocity in the Liverpool Bay. They show that 1) the strategy used to de-
ploy drifters has a significant impact on the network connectivity and sensing
coverage, and 2) based on that dataset, the star deployment is preferred to the
grid and hash deployments.

5 Resource Management

In the previous section, we compared three deployment strategies and selected
the star deployment as the preferred approach. In this section, we examine vari-
ants of the star deployment in detail. Our aim is to understand the tradeoffs
involved in varying the use of three network resources - number of drifters, num-
ber of basestations and communication range of simple drifters- to achieve a
desirable sensing density. In each experiment, we fix the value of one of the
three resources and measure the average sensing density as we vary the other
two. Sensing density is averaged over 200 time-steps of 5 mins each (from time-
step 100 to time-step 300).

Impact of Drifter Deployment on the Quality of Ocean Sensing 21

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

av
g

se
ns

in
g

de
ns

ity

 (
dr

ift
er

s
in

 2
0k

m
 x

 2
0k

m
 a

re
a)

number of basestations

comm. range = 1 km
comm. range = 2 km
comm. range = 3 km
comm. range = 4 km
comm. range = 5 km
comm. range = 6 km
comm. range = 7 km

Fig. 10. Density of drifters in the area of interest as we vary the number of basestations
and the communication range of simple drifters

We aim to address the following three questions:

1. How is sensing density affected by the number of basestations for various
communication ranges? For example, if we want to increase the sensing den-
sity by δ, is it better to increase the communication range of drifters or
convert some of the drifters into basestations by equipping them with satel-
lite connectivity?

2. How is sensing density affected by the number of drifters for various commu-
nication ranges? If we want to increase network density by δ, is it better to
increase the communication range of drifters of buy more drifters with the
same communication range?

3. How is sensing density affected by the number of basestations for various
numbers of drifters? If we want to increase network density by δ, is it better
to increase the number of basestations or the number of drifters?

Figure 10 studies the tradeoff between the communication range of simple
drifters and the number of basestations. The total number of drifters is set to
16. For small communication ranges, increasing the number of basestations is
very beneficial in terms of sensing density. However, the benefit of adding a
basestation is significantly decreased as we increase the communication range of
simple drifters. Figure 10 shows that with 1 basestation and a 2 km communica-
tion range we observe an average of 10 drifters in the area of interest. To increase
the sensing density from 10 to 14 drifters, we could either turn 10 drifters into
basestations or we could increase the communication range of all drifters to 7
km. Depending on the price of each resource, network engineers can make an
informed decision about how to reach their density goal.

Figure 11 studies the tradeoff between the total number of drifters and their
communication range. The number of basestations is set to 2. Interestingly for
small communication ranges (1-3km) the sensing density is initially sublinear
in the number of drifters and then it becomes superlinear. Initially, when we
insert a new drifter in the network, it might be disconnected from the other

22 K.P. Ferentinos, N. Trigoni, and S. Nittel

 0

 5

 10

 15

 20

 25

 30

 35

 16 17 18 19 20 21 22 23 24 25

av
g

se
ns

in
g

de
ns

ity

 (
dr

ift
er

s
in

 2
0k

m
 x

 2
0k

m
 a

re
a)

total number of drifters

comm. range = 1 km
comm. range = 2 km
comm. range = 3 km
comm. range = 4 km
comm. range = 5 km
comm. range = 6 km
comm. range = 7 km

Fig. 11. Density of drifters in the area of interest as we vary the total number of drifters
and their communication range

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12

av
g

se
ns

in
g

de
ns

ity

 (
dr

ift
er

s
in

 a
 2

0k
m

 x
 2

0k
m

 a
re

a)

number of basestations

total drifters = 16
total drifters = 19
total drifters = 21
total drifters = 23
total drifters = 25

Fig. 12. Density of drifters in the area of interest as we vary the total number of drifters
and the number of basestations

drifters because of the low communication range. However, as we keep inserting
new drifters, density increases faster, because the new drifters connect not only
themselves, but also previously disconnected drifters, to one of the basestations.
Given a fixed number of basestations, if we want to increase network density,
we have the option of increasing the number of drifters or their communication
range. For example, Figure 11 shows that with 19 drifters and a 3 km communi-
cation range, we have on average 13 drifters in the area of interest. To increase
the sensing density to 15 drifters we could either insert 3 more drifters or increase
the communication range of all drifters to 4 km.

Figure 12 illustrates the tradeoff between the total number of basestations
and the total number of drifters (sum of simple drifters and basestations). The
communication range of simple drifters is set to 4 km. As we observed in Figures 6
and 7 of Section 4, the density of the star deployment is consistently high and it
is not affected by the number of basestations. This is also confirmed in Figure 12,
which shows that to increase network density, the only way is to increase the
number of drifters.

Impact of Drifter Deployment on the Quality of Ocean Sensing 23

6 Conclusions

In this paper, we investigated the impact of the drifter deployment strategy on
the quality of ocean sensing performed using a fleet of drifters passively propelled
by surface currents. These drifters form an adhoc sensor network; they monitor
coastal waters with local sensor devices and propagate their readings hop-by-
hop to a few mobile base-stations. Our comparison of the performance of three
different deployment strategies, namely the grid, hash and star deployments, led
us to the following conclusions.

The influence of deployment strategy over multi-hop connectivity depends on
the number of basestations in the network. In cases with few basestations (1 or 2
basestations out of 16 drifters) the star deployment clearly exhibits significantly
higher multi-hop connectivity than the hash and grid deployments. However,
in cases with 4 or more basestations, all three strategies behave similarly. As
far as sensing density is concerned, the star deployment outperforms the other
two deployment strategies, irrespectively of the number of basestations in the
network. In terms of uniformity of sensing points, the grid deployment is slightly
better, however this benefit is too small to counteract the superiority of the star
deployment in terms of sensing density. Thus, we conclude that 1) the strategy
used to deploy drifters has a significant impact on the network connectivity and
sensing coverage, and 2) the star deployment is preferred to the grid and hash
deployments in the context of a network of drifters moving under real current
conditions at Liverpool Bay.

Finally, we addressed three major tradeoff issues concerning ways to achieve
specific increase in sensing density by an existing network of drifters. In the
tradeoff between increasing the communication range of drifters or converting
some of the simple drifters into basestations, we concluded that both ways are
effective and the decision would be purely based on economical parameters. In
the tradeoff between increasing the communication range of drifters or simply
adding more drifters to the network, we concluded that for small communication
ranges, increasing the communication range is more effective than adding more
drifters, while for larger communication ranges both solutions are effective and
again economical parameters come into play. Finally, in the tradeoff between
adding more drifters to the network or converting some of the existing drifters
into basestations, we concluded that the former approach is by far the most
effective solution.

References

1. Akyildiz, I.F., Pompili, D., Melodia, T.: Challenges for efficient communication in
underwater acoustic sensor networks. ACM SIGBED Review 1(2), 3–8 (2004)

2. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: re-
search challenges. Ad Hoc Networks 3(1), 257–279 (2005)

3. Ferentinos, K.P., Tsiligiridis, T.A.: Adaptive design optimization of wireless sensor
networks using genetic algorithms. Elsevier Computer Networks 51(4), 1031–1051
(2007)

24 K.P. Ferentinos, N. Trigoni, and S. Nittel

4. Gould, J., et al.: Argo profiling floats bring new era of in situ ocean observations.
EOS 85(19), 179–184 (2004)

5. Nittel, S., Trigoni, N., Ferentinos, K., Neville, F., Nural, A., Pettigrew, N.: A drift-
tolerant model for data management in ocean sensor networks. In: MobiDE, pp.
49–58. ACM Press, New York (2007)

6. U. of Washington. The neptune project page
7. Pettigrew, N., Churchill, J.H., Janzen, C., Mangum, L., Signell, R., Thomas, A.,

Townsend, D., Wallinga, J., Xue, H.: The kinematic and hydrographic structure of
the gulf of maine coastal current. Deep Sea Research II 52, 2369–2391 (2005)

8. Proakis, J., Sozer, E., Rice, J., Stojanovic, M.: Shallow water acoustic networks.
IEEE Communications Magazine 39(11), 114–119 (2001)

9. Sozer, E., Stojanovic, M., Proakis, J.: Underwater acoustic networks. IEEE Journal
of Oceanic Engineering 25(1), 72–83 (2000)

10. Stojanovic, M.: Recent advances in high-speed underwater acoustic communica-
tion. IEEE Journal of Oceanographic Engineering 21, 125–136 (1996)

11. Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P.: Data collection, storage,
and retrieval with an underwater sensor network. In: SenSys 2005: Proceedings of
the 3rd international conference on Embedded networked sensor systems, pp. 154–
165. ACM Press, New York (2005)

12. Zhang, B., Sukhatme, G., Requicha, A.: Adaptive sampling for marine microor-
ganism monitoring. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (2004)

Efficient Data Collection and Selective Queries in
Sensor Networks

Lars Kulik, Egemen Tanin, and Muhammad Umer

National ICT Australia
Department of Computer Science and Software Engineering

University of Melbourne, Victoria, 3010, Australia
{lars,egemen,mumer}@csse.unimelb.edu.au

Abstract. Efficient data collection in wireless sensor networks (SNs) plays a key
role in power conservation. It has spurred a number of research projects focusing
on effective algorithms that reduce power consumption with effective in-network
aggregation techniques. Up to now, most approaches are based on the assumption
that data collection involves all nodes of a network. There is a large number of
queries that in fact select only a subset of the nodes in a SN. Thus, we concen-
trate on selective queries, i.e., queries that request data from a subset of a SN.
The task of optimal data collection in such queries is an instance of the NP-hard
minimal Steiner tree problem. We argue that selective queries are an important
class of queries that can benefit from algorithms that are tailored for partial node
participation of a SN. We present an algorithm, called Pocket Driven Trajectories
(PDT), that optimizes the data collection paths by approximating the global min-
imal Steiner tree using solely local spatial knowledge. We identify a number of
spatial factors that play an important role for efficient data collection, such as the
distribution of participating nodes over the network, the location and dispersion
of the data clusters, the location of the sink issuing a query, as well as the loca-
tion and size of communication holes. In a series of experiments, we compare
performance of well-known algorithms for aggregate query processing against
the PDT algorithm in partial node participation scenarios. To measure the effi-
ciency of all algorithms, we also compute a near-optimal solution, the globally
approximated minimal Steiner tree. We outline future research directions for se-
lective queries with varying node participation levels, in particular scenarios in
which node participation is the result of changing physical phenomena as well as
reconfigurations of the SN itself.

1 Introduction

Efficient data collection and aggregation algorithms for sensor networks (SNs) exploit
the fact that a sensor node consumes significantly less energy for information processing
than for communication. Aggregating information at the node level such as computing
the sum or the average of sensor readings reduces the need for communication: instead
of transmitting the packets of each individual node separately, a node first aggregates
the incoming packets of the nodes in communication range and then communicates the
aggregated information to the next node in the collection path.

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 25–44, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 L. Kulik, E. Tanin, and M. Umer

Major in-network data processing techniques for SNs do not take an explicit position
on the issue whether or not a query predicate selects all the nodes of a SN. Instead,
most techniques implicitly assume that a query requires all nodes to respond. We refer
to the sensor nodes that report their readings to a selective query as participating nodes.
An example of a selective query is “SELECT the humidity readings FROM all sensors
WHERE the temperature is above 40◦ for a DURATION of 2 hours EVERY 5 minutes”.
We call all nodes that fulfill the WHERE clause the participating node set of this query.

Current SN data management models such as Cougar and TinyDB view the SN as
an ever growing relation(s) of tuples that are distributed across the sensor nodes [1,2].
They mimic classical relational database management systems. In classical systems
query predicates limit the number of tuples that form the output relation. The query
predicates in these models also serve to limit the set of sensor nodes that contribute
to the answer of a query. Techniques developed for efficient data collection in SNs, in
particular classical tree-based and multipath-based techniques [3,4], generate a nearly
optimal number of messages for aggregation operations if all nodes need to report to a
query. We show that these major in-network data processing schemes do not continue
this optimal behavior for selective aggregate queries.

Most approaches for data collection, do not explicitly address query selectivity while
computing an efficient data collection path. There are two main directions in SN query
processing for optimizing the data collection process for selective queries: (1) prevent-
ing that a query is sent to nodes that do not fall into the scope of that query and, there-
fore, are not aware of the query and do not need to respond, and (2) minimizing the
number of non-participating nodes in the collection path. An example for the first di-
rection is the concept of semantic routing trees [5] where optimization between queries
is the main focus. In this paper, we address the second direction. The main contribution
of our research is a strategy that minimizes the number of nodes used in processing
a query by discovering constrained regions to grow sub-trees for data collection and
combining these trees in an efficient manner to transmit the final result to the sink. This
strategy contrasts with earlier tree-based approaches, such as TAG, where the tree is
created in a random manner using local greedy parent selection policies [1].

Our algorithm, called Pocket Driven Trajectories (PDT) is based on the insight that
spatial correlation in sensor values coupled with query selectivity results in a set of par-
ticipating nodes formed by one or more geographically clustered sets. We refer to these
geographical clusters as pockets. The PDT algorithm first discovers the set of pock-
ets for a given query and then aligns the aggregation tree to the spatially optimal path
connecting these pockets. This path maximizes the use of participating nodes in the tree
and conversely minimizes the number of non-participating nodes. The PDT algorithm is
best suited to the selective queries that regularly collect data from a relatively consistent
set of nodes over time. The initial set-up cost for the PDT algorithm can be amortized
over the query lifetime.

The task to minimize the number of non-participating nodes in processing a query
can be modeled as a minimal Steiner tree problem; which is known to be NP hard [6].
The number of nodes used in the globally approximated minimal Steiner tree for a
given set of participating nodes can be seen as a near-optimal solution for the mini-
mum number of nodes required for data collection. There are a number of algorithms to

Efficient Data Collection and Selective Queries in Sensor Networks 27

compute an approximation of the minimal Steiner tree efficiently [7,6,8]. These approx-
imation algorithms, however, require global knowledge of the communication graph.
This knowledge is typically not available in a SN. For a SN we require techniques that
do not rely on global information about the network. The PDT algorithm can be con-
sidered as an approximation to the minimal Steiner tree that is solely based on local
information. Our experiments show that for selective, aggregate queries, PDT does not
only give better performance results than major in-network aggregation schemes but is
also close to a globally approximated minimal Steiner tree.

A chief contribution of our work is the performance comparison of PDT and other
major aggregation algorithms using extensive simulations in a number of node partic-
ipation scenarios. We identify important parameters to capture the spatial properties
of a node participation scenario and use these as a basis for our analysis. We show in
our experiments that selectivity-awareness can reduce the usage of a large number of
non-selected nodes in the data collection path, in particular, if the query selectivity is
high.

Finally, we present future research directions where node participation is affected by
changing physical phenomena as well as the SN configuration.

2 Related Work

Three major techniques for efficient data collection and aggregation are packet merging,
partial aggregation, and suppression. The communication cost in wireless networks is
determined by the number of packets a node has to transmit. Each packet has a fixed size
and the size of a sensor reading, record, is typically much smaller. Packet merging [2]
combines several smaller records into a few larger ones and thus reduces the number of
packets and thereby the communication cost. Partial aggregation computes intermediate
results at the node level such as the sum or the average of sensor readings. Suppression-
based techniques only transmit values if the sensed values have changed from the previ-
ous transmission or differ from the values of neighboring sensor nodes [9]. Orthogonal
techniques minimizing communication are compression techniques [10], topology con-
trol, or approximation of sensor readings.

TinyDB [1] enables in-network aggregate query processing using a generic ag-
gregation service called TAG (Tiny AGgregation) [3]. TAG is one of the pioneering
tree-based in-network aggregation schemes. To gather data within the SN, the sink is
appointed to be the root of a tree and broadcasts its identifier and its level. All nodes that
receive this message without an assigned level, determine their own levels as the level
in the received message incremented by one. The identifier in the message determines
the parent for the nodes receiving the message. In a lossless network in which all nodes
are selected by a query, the resulting collection tree is close to an optimal solution. Ag-
gregation in TAG is implemented by a merging function, an initializer, and an evaluator,
and the aggregation operator is applied at every internal node.

In order to further optimize the data aggregation process, TinyDB introduces the
concept of a semantic routing tree (SRT) [1,5]. Although the concept of selectivity is
not explicitly addressed in TAG [3], SRTs can support selective queries. The basic idea
behind SRTs is to proactively prune the SN in the query dissemination stage by ensuring

28 L. Kulik, E. Tanin, and M. Umer

that a selective query is sent only to those nodes that fall under its scope. SRT maintains
meta-information at each internal node of the aggregation tree. More precisely, an SRT
is an index over a fixed attribute A, for example the temperature sensed by the network,
where each parent maintains the range of all values of its children for the attribute A.
When a query is received by a parent, it forwards the query only when at least one
child satisfies the predicate. An SRT optimizes the query forwarding phase of TAG and
greatly reduces the number of broadcasts required to reach the nodes selected by the
query. To avoid a high cost of maintenance, SRTs are designed for constant attributes
such as the temperature or the location [1]. However, the maintenance cost of SRT can
exceed its benefit if it has to be maintained for frequently varying attributes [1]. SRTs
do not focus on the data collection optimization but on the broadcast of the query.

Tree-based aggregation schemes can be extended for changing network condi-
tions [11]: aggregation operators are pushed down in an aggregation tree and adapt
to changing conditions, such as a sub-tree that generates more readings than a sibling.
This approach incrementally improves on existing schemes. In our work, we develop
an aggregation scheme that, after retrieving the initial readings from a SN, specifically
tailors the collection path to the sensor readings and the set of selected nodes in a SN.

Data collection paths are susceptible to link and node failures in a SN [4,12]. If a link
or node fails that is close to the sink, the aggregated information of an entire sub-tree
might be lost. Multi-path aggregation algorithms exploit the benefits of the wireless
broadcast advantage that all nodes in communication range can hear a message and
propagate the aggregates toward the sink using multiple routes. As a consequence data
collection along multiple paths can be more robust for node failures or communication
losses. In return, a multi-path aggregation algorithm has to cope with redundancy and
deviations in data aggregation [13].

In [4] multi-path aggregation algorithms are seen as energy efficient as tree-based
ones because each node only has to transmit a message once, in the same way as in
any tree-based aggregation algorithm. However, a crucial assumption is that the receive
time for each communicating sensor is not increased by multiple readings. Recent stud-
ies on the energy consumption of sensor nodes report that the energy requirement for
the receive mode is only slightly lower compared to the energy cost for the transmission
mode [14], i.e., a sensor node consumes almost the same amount of energy in receiv-
ing data as in transmitting data. In multi-path aggregation, each node expects to receive
data from all nodes in communication range that have a higher level than the listening
node. Therefore, the duration for receiving data can be considerably longer compared to
a tree-based aggregation algorithm, where each node only has to listen to its direct chil-
dren, a set that can be a significantly smaller. In addition, we show that with decreasing
participation levels for a selective query, the energy cost for multi-path schemes can be
quite high than a tree-based scheme or our PDT algorithm.

To overcome the higher energy costs, an approach that locally applies multi-path
aggregation locally but not to the entire network is suggested in [15]. This approach is
a hybrid aggregation scheme that combines the benefits of the two major aggregation
schemes to form a more efficient option than pure multi-path aggregation schemes: a
multi-path-based aggregation scheme is preferred to a simple tree-based aggregation
scheme when the in-network aggregation operator is close to the sink; for deeper levels

Efficient Data Collection and Selective Queries in Sensor Networks 29

of aggregation tree, the operators work as if they are on a TAG-like aggregation tree as
the loss of a sensor at deeper levels only marginally effects the final result.

A key challenge for multi-path routing schemes is to develop duplicate-insensitive
algorithms for each aggregation operator. A naive approach could include meta infor-
mation in each aggregated message such as the node identifier that participated in the
creation of an aggregate, which could be used by forwarding nodes to suppress dupli-
cation. Although this approach could achieve the same accuracy as a tree-based ag-
gregation algorithm, the limited storage and processing capabilities of sensor nodes,
however, render such a scheme impractical for larger SNs. Thus, all multi-path schemes
integrate much cheaper probabilistic Order and Duplicate Insensitive (ODI) methods of
the sketch theory [4,13]. Therefore, current research in multi-path aggregation focuses
on the development of better ODI algorithms to reduce the approximation error.

Data collection in SNs can be optimized using spatial and temporal suppression-
based techniques [9]. Temporal suppression is the most basic method: the transmission
of a sensor reading from a node is only allowed if its value has changed from last
transmission. Spatial suppression includes methods such as clustered aggregation and
model-based suppression [16]. They aim to reduce redundant transmissions by exploit-
ing the spatial correlation of sensor readings. If the sensor readings of neighboring sen-
sor nodes are the same, the communication of those sensed values can be suppressed.
With CONCH [9], a hybrid spatio-temporal suppression algorithm, is introduced, that
considers the node readings and their differences along the communication edges to
suppress reports from individual nodes. Suppression is an orthogonal data flow opti-
mization method to our approach and can easily integrated into other approaches.

Clustered in-network aggregation is a spatial suppression technique exploiting the
spatial correlation of sensor readings to preserve energy [17,18,19]. Spatial correlation
in sensed data refers to the fact that sensor readings in close proximity are typically
similar. Spatial correlation is a frequent phenomenon for physical phenomena such as
temperature or humidity [20]. If a selective query has to retrieve an aggregate such
as the average temperature in a certain area, then nearby nodes typically have similar
readings and are geographically clustered. Hence, only one node needs to respond to an
aggregate query from a cluster [18,19] as in the Clustered AGgregation (CAG) and the
Geographic Adaptive Fidelity (GAF) approaches. In static clustering [17], the network
is statically partitioned into grid cells. For each grid cell one node is appointed as a
cluster head that acts as a gateway but every node that has to respond to a query still
reports its readings. In each cell, data is routed via a local tree, aggregated at the local
gateway and then communicated to the sink. Methods that rely on approaches such as
clustered in-network aggregation (such as CAG) have the disadvantage that the reported
results can deviate from the real sensor readings. However, static clustering does not
have this issue and is comparable to our work. Unlike our work, static clustering does
not tune the collection paths to the specific network conditions.

In [21], the optimal data collection problem in SNs has been identified as a Steiner
tree problem. The authors propose a data collection scheme based on a global Steiner
tree approximation [8]. The main disadvantage of their approach is the requirement that
each sensor node must have global knowledge in terms of network connectivity and
minimum-hop routes, a knowledge that is costly and difficult to maintain in a SN where

30 L. Kulik, E. Tanin, and M. Umer

nodes have very limited capabilities. Each update of the global knowledge about such a
graph at each node leads quickly to unnecessary storage and communication overheads.
The PDT algorithm uses only local information that is easily available to any node in
the network. Furthermore, the PDT collection path is query specific, i.e., no permanent
information has to be kept or maintained.

3 A Location Based Aggregation Algorithm

Queries such as the example query in Section 1 that identify all locations with a tem-
perature higher than 40◦ represent an important type of SN queries. In a fire monitoring
system, this query could be used to collect data about the humidity levels in a large re-
gion in order to identify areas that have a severe fire risk. Queries of this type run for a
period of time and periodically retrieve selected sensor readings from the SN. We refer
to these queries as selective recurrent queries.

Selective queries, in contrast to an exhaustive or a snapshot query, can benefit from
an optimized data collection strategy. In snapshot queries, where the sink cannot pre-
dict the number or the location of participating nodes in advance, it can be ineffective
to spend resources on the discovery of the participating nodes. In exhaustive queries,
where all nodes have to respond to a query, a random tree such as TAG often provides
a near-optimal data collection strategy. However, in selective queries, we show that it
is beneficial to invest resources for identifying nodes that do not need to be part of the
data collection especially if the query involves many sampling periods, or epochs. The
initial cost for an optimized aggregation path can later later be amortized during the
life time of a query. Thus, selective recurrent queries are the primary motivation for the
PDT algorithm.

In general, it is not possible to find a data collection and aggregation strategy that
only employs those nodes that need to participate for a given query. Due to the con-
straints on the transmission range for sensor nodes, a data gathering algorithm usually
has to include some nodes that are not selected by the query in order to reach the sink.
The quality of a data aggregation scheme is determined by the total number of non-
participating nodes used in a query. The smaller the number of non-participating nodes,
the more energy efficient an algorithm will generally be. In the PDT algorithm, we
minimize the number of non-selected nodes in the data collection structure by spatially
restricting the aggregation path to a corridor that connects the pockets in an energy
efficient manner.

The problem of reporting aggregates back to a sink by involving minimum number
of non-participating nodes can be seen as an application of the minimum Steiner tree
problem: given a graph G = (V, E) and a set of terminal nodes T ⊂ V , we seek
a minimum cost spanning tree that includes all terminal nodes [22]. In our case, the
terminal nodes are the participating nodes. The minimum Steiner tree problem is known
to be NP-hard and has been widely discussed in the literature [6].

In order to compare aggregation schemes with the optimal aggregation tree, the min-
imum Steiner tree, we outline a popular global Steiner tree approximation algorithm
developed by Kou, Markowsky, and Berman [7] (henceforth referred to as KMB). The
KMB algorithm allows us to compute a Steiner tree that has been shown to achieve a

Efficient Data Collection and Selective Queries in Sensor Networks 31

mean efficiency that is not worse than 5% compared to the optimal Steiner tree [6,23].
For a graph G and a set of terminal nodes T , the KMB algorithm first computes a com-
plete distance graph G′ = (V ′, E′) for G such that V ′ = T and the weight of each edge
e′ in E′ is the cost of the minimum cost path between the nodes of e′ in G. Then, the
algorithm computes a minimum spanning tree MST ′ of G′, translates MST ′ to G by
substituting every edge of MST ′ with the corresponding path in G, and finally removes
any possible cycles resulting from the translation.

The KMB algorithm is not directly applicable to SNs because, the algorithm requires
global knowledge of the node connectivity for any node in the graph. Therefore, we de-
velop a localized aggregation scheme, called PDT (pocket driven trajectories), that ap-
proximates the minimal Steiner tree for a selective query. The experiments in Section 4
show that the resulting aggregation tree is comparable to KMB’s global approximation.

3.1 Algorithm Overview

We assume that a SN with n nodes is represented by a connected unit disk graph G =
(V, E), where V is the set of sensor nodes and E the set of communication links. Each
query Q issued by a sink S selects a subset T of V . The PDT algorithm works as follows
(Figure 1):

1. the sink broadcasts the query Q and establishes a tree as in TAG;
2. during the first epoch the sink discovers a set of pockets P = {p1 . . . pk} that

partitions the set T ;
3. the sink computes a complete graph G′ = (V ′, E′), where V ′ = P ∪{S} and each

edge weight is the Euclidean distance in the SN;
4. the sink computes the minimum spanning tree MST ′ of G′;
5. the sink establishes an aggregation tree aligned to MST ′;

One of the key steps in the PDT algorithm is the localized discovery of pockets by the
sink. A pocket is a cluster of nodes selected by a query that are proximal, i.e., within a
certain distance. Due to spatial correlation, pockets are common while sensing physical
phenomena. We refer to the time between the two sampling operations of a query as an
epoch following the terminology used in data aggregation for SNs. In the following, we
describe a novel pocket discovery method, location aggregation, that computes pockets
with minimal overhead.

Figure 1 illustrates possible pockets that are selected by a query issued at a sink.
The sink broadcasts the query and all sensor nodes build a random query tree. In the
first epoch, participating leaf nodes start the aggregation phase by sending the requested
sensor readings to their parent nodes and by piggybacking their location information as
Euclidean coordinates. Parent nodes recursively apply the query and location aggrega-
tion operators and forward the partial aggregates to their parent nodes. The aggregation
operation proceeds as in classical data collection schemes. The key step is the location
aggregation, performed in parallel to data aggregation. The location aggregation oper-
ator merges locations to an enclosing rectangle if the children nodes are proximal leaf
nodes, and forwards the non-proximal nodes as singletons. If a participating node re-
ceives a rectangle, it merges the rectangle with its own position into a larger rectangle,

32 L. Kulik, E. Tanin, and M. Umer

1 2

3
4

5

(a) A selective participation sce-
nario with five pockets. The
black circle represents the sink.

5

3

2

1

4

(b) A complete graph as an ab-
stract representation of the sce-
nario

5

3

2

1

4

(c) MST ′

1 2

3
4

5

(d) MST ′ as an aggregation path

Fig. 1. The computation of the PDT for a selective participation scenario

if its position is proximal, and otherwise simply forwards the existing rectangle and sin-
gleton locations with its own location. Since the location information is piggybacked
with the desired data, we expect that the location aggregation incurs a small overhead
in terms of communication costs. Moreover, the successive merging of close pockets
keep the volume of information small.

At the end of first epoch, the sink receives the queried aggregate and after applying
location aggregation operation discovers the pockets (p1 . . . pk) selected by the query.
The sink then computes a complete graph G′ as explained in the overview of the PDT
algorithm (see Figure 1(a), 1(b)). The algorithm then creates a minimum spanning tree
MST ′ for G′ at the sink. MST ′ is a pocket driven trajectory that optimizes aggregation
for the specific pocket layout (Figure 1(c)). The PDT information can be encoded as a
series of locations, each corresponding to either a sink location or the center point of
one of the pocket rectangles. During the next epoch, the sink establishes the PDT by
broadcasting the PDT information to all its direct children. All participating nodes that
receive the PDT information packet join the trajectory by reassigning their parents to
that node from which they receive the PDT information. Non-participating nodes de-
cide to join the trajectory depending upon their distance to the trajectory and only nodes
that join the trajectory forward the information packet. The successive forwarding and
parent switching leads to a new aggregation tree aligned with the PDT (Figure 1(d)).
This new tree is afterwards used for data forwarding and aggregation. The initial TAG
tree is still maintained because in future epochs previously non-participating nodes may

Efficient Data Collection and Selective Queries in Sensor Networks 33

participate. Future participating nodes might have never heard the PDT information and
thus have to use the original tree for data aggregation.

3.2 Shortcomings and Overheads

A query in a SN can consist of a large number of epochs. Even if the change per epoch
is small, the node participation can change significantly during the lifetime of a query.
The PDT algorithm is ideal if the change per epoch is relatively small so that the pockets
do not change significantly in every step. Under those conditions, the PDT may have
to be realigned a few times during the lifetime of a query. However, currently the PDT
algorithm does not adapt to change within a query. We leave the investigation of more
dynamic scenarios to future work.

The increase in packet size due to the aggregation of location information increases
the communication overhead. The location information consists of aggregated pocket
information and a list of atomic locations. Due to the spatial correlation of physical phe-
nomena, the number of atomic locations is typically small and singletons mostly occur
at the leaf level of the aggregation tree. The singletons are almost completely merged
at the lower levels of the tree into pockets that traverse for the remainder of the tree
in a compact form as rectangles. Our experiments show that the location information
aggregation only slightly increases the communication messages.

The announcement of the PDT is the other overhead of the PDT algorithm. The
number of extra messages generated during PDT information broadcast phase is equal
to the number of nodes that decide to join the PDT. The initial setup cost can be amor-
tized over the query lifetime. However, the initial cost cannot be amortized for snapshot
queries and hence we do not recommend the use of the PDT algorithm for such queries.

4 Experimental Evaluation

4.1 Evaluation Parameters

In this section we compare the performance of the PDT algorithm and other major in-
network aggregation schemes in a variety of SN settings. We first lay out the evaluation
parameters that we use to analyze the impact of spatial characteristics of selective ag-
gregate queries.

Spatial Selectivity Index. The nature and extent of spatial clustering of participating
nodes may depend upon a number of factors, such as the magnitude of spatial corre-
lation, SN configuration, the query predicate, and so forth. We introduce an integrated
measure, called spatial selectivity index, SSI, that describes the extent of spatial cluster-
ing in a SN. SSI is based on two key parameters, node scattering and pocket scattering.

The node scattering, NS, at time t (we will drop the argument t for the sake of
simplicity) describes the distribution of pockets for a query as the ratio of the total
number of pockets P relative to the number of participating nodes N :

NS = P/N

34 L. Kulik, E. Tanin, and M. Umer

The pocket scattering, PS, characterizes the degree of dispersion for the pocket lo-
cations. We define the pocket centroid, PC, of a pocket Pi as the sensor node that is
closest to the average location of all nodes belonging to Pi. We then define the global
pocket centroid, GPC, as the node that is closest to the centroid of all pocket centroids
P1, . . . , Pl partitioning the nodes selected by the query:

GPC =
1
l
·

l∑

i=1

PC(Pi)

Let HC(v, v′) denote the minimum number of hops for a path connecting two nodes v
and v′. Then, the pocket scattering PS is defined as the average of hop counts connecting
the global pocket centroid with the pocket centroids of the pockets P1, . . . , Pl:

PS =
1
l
·

l∑

i=1

HC(PC(Pi), GPC)

We use the hop count between two nodes as a distance measure instead of their Eu-
clidean distance. Since deployments of SNs can exhibit holes and barriers, the hop count
provides a realistic approximation of the actual communication cost. It should be noted
that the use of hop count as a distance measure is purely for evaluation purposes. The
PDT algorithm itself does not use the hop count measure due to the practical limitations
in making such information available locally at each node.

The spatial selectivity index SSI is then defined as a measure that describes the im-
pact of node scattering as well as of pocket scattering for a given scenario:

SSI = NS · PS

Lower SSI values characterize scenarios that are well pocketed and have a small pocket
scatter, for example see Figure 3(a) and 3(b) in Section 4.3 that show two network
deployments with different SSI values.

Sink Centroid Distance. We formalize sink position in order to analyze the affect of
sink location on the performance of an aggregation algorithm. The ideal position of a
sink is the GPC. The sink centroid distance, SCD, measures the hop count between the
sink and its ideal position. If S is the position of the sink, the sink centroid distance
SCD is defined as

SCD = HC(S, GPC)

Co-Connectivity of a Deployment. Although a rectangular deployment is common in
simulations, e.g., without any holes that alter connectivity, in this paper, we also con-
sider the impact of irregular deployments on aggregation algorithms. Particularly, we
measure the impact of holes. To simplify our discussion, we only take the total number
of holes and their normalized size into account. If |R| denotes the size of the deploy-
ment area R, then the normalized size of a hole Hi is |Hi|/|R|. The co-connectivity
measure CC is then defined as the sum of the normalized sizes of all holes:

CC =
∑

i

|Hi|/|R|

Efficient Data Collection and Selective Queries in Sensor Networks 35

4.2 Simulation Setup and Methodology

In addition to PDT, we implement comparable aggregation algorithms discussed in Sec-
tion 2. We implement all algorithms in Network Simulator-2 (NS-2) [24]. To provide a
lower bound, we compute for each experiment an approximation of the optimal aggre-
gation tree using the KMB algorithm. In our simulations, we collect the AVERAGE on
a deployment of 750 nodes, placed randomly in a 75m x 75m grid. Each query collects
data from a SN for 100 epochs. We utilize the NS-2 wireless communication infrastruc-
ture that simulates 914 MHz Lucent Wave LAN DSSS radio interface using the two ray
ground reflection propagation model and IEEE 802.11 MAC layer (Chapters 16 & 18
of the NS-2 Manual [24]). Communication is performed using omni-directional anten-
nas centered at each node, while the communication radius is fixed at 5m. The message
payload is fixed at 72 bytes and we assume that every algorithm has the same payload
for data transfers. Furthermore, we assume a lossless network with synchronized many-
to-one aggregation, i.e., during in-network aggregation each internal node is perfectly
synchronized with its children and after aggregation it always emits just one packet.

We use total data transmission (in MBs) as an indication of energy usage and hence
as the basic metric of performance comparison. The amount of data transmission can be
related to the energy expenditure by a simple function such as ε = σs + δsx, where ε is
the total amount of energy spent in sending a message with x bytes of content, and σs

and δs represent the per-message and per-byte communication costs, respectively [9].
In order to systematically study the impact of varying participation levels and se-

lective participation measures as defined in Section 4.1, we design our experiments
according to the following questions:

– What is the impact of query selectivity and level of spatially correlated node par-
ticipation on the performance of aggregation algorithms?

– What is the impact of the position of pockets and their dispersion in selective par-
ticipation scenarios?

– What is the impact of the location of the sink on the performance of an aggregation
algorithm in low node participation levels?

– What is the impact of (communication) holes on data collection?

4.3 Results

Impact of Query Selectivity. In two experiments, we investigate the impact of the
query selectivity on four different aggregation schemes: PDT, multi-path (MP), static
clustering (SC), and TAG. In the first experiment, Figure 2, we change the selectivity
of an aggregate query and hence the number of nodes that participate in a query by 1%
increments from 2% to 10% of the total nodes in the SN. The participating nodes are
spatially clustered (see the deployment snapshot in Figure 2(a)). Figure 2(b) shows the
mean value of the number of bytes transmitted by each algorithm at each participation
level (the average of five runs is used to find the mean value). Figure 2(c) shows results
from a similar experiment with participation levels ranging in discrete steps from 10%
to 60%.

36 L. Kulik, E. Tanin, and M. Umer

(a) A spatial configuration
for partial node partic-
ipation. Larger circles
represent nodes that par-
ticipate in a query. Black
circle represents the sink.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10
Participation(%)

B
yt

es
 T

ra
n s

m
itt

ed
(M

B
)

TAG PDTMP SC KMBX

(b) Detailed comparison
of data transmissions
for each algorithm in
low participation sce-
narios (the participation
level ranges between
2%–10%)

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60
Participation(%)

B
yt

es
 T

ra
ns

m
itt

ed
(M

B
)

TAG PDTSC KMBX

(c) The overall trend for each
algorithm in terms of data
transmissions (the partic-
ipation level ranges be-
tween 10%–60%)

Fig. 2. The performance of aggregation techniques for varying levels of partial node participation

Figure 2(b) shows that for low node participation levels, PDT performs better than
other aggregation schemes. For participation levels from 2% to 10% PDT is, on aver-
age, 41% more efficient than TAG and 37% more efficient than SC. In addition, PDT
is just 21% less efficient than the approximated lower bound, where TAG and SC are
72% and 67% less efficient, respectively. This experiment also reveals that the energy
consumption for MP in low participation scenarios is significantly higher than all other
aggregation algorithms. MP requires at least 2.7 and 2.8 times as much data transmis-
sion as TAG and SC, respectively and 3.8 times more than PDT. Similarly, the trend in
Figure 2(c) shows that PDT remains energy efficient even for high participation levels
but its advantage decreases as the participation levels increase. At 10% participation,
PDT requires 30% less data transmissions than TAG and 31% less than SC; however
at the participation level of 60% this lead reduces to 4% and 5% for TAG and SC, re-
spectively. The decrease in efficiency results from the fact that with the increase in node
participation the benefit of spatial correlations diminishes. This effect can also be ob-
served from the fact that at 60% participation level PDT is just 3% less efficient than
the KMB lower bound. For high participation levels, MP is not shown on the figure to
simplify the presentation.

Impact of Varying the Spatial Selectivity Index. This section describes a set of ex-
periments that assess the performance of the PDT algorithm in various spatial layouts,
characterized by different SSI values. A low SSI value represents a low dispersion sce-
nario. We expect a better performance from PDT and other aggregation algorithms for
selective queries with low SSI values. In this experiment, we achieve the effect of in-
creasing SSI values by expanding the dispersion of pockets in the network, while the
total number of pockets, the node participation level, and the sink position remains
constant. Figure 3(a) and 3(b) show the deployment snapshots of two scenarios.

Figure 3(c) confirms the hypothesis that all algorithms perform better for lower SSI
values (standard deviations are also shown in this chart). As the dispersion of the par-
ticipating nodes increases, all algorithms have to spend more energy. For the analyzed

Efficient Data Collection and Selective Queries in Sensor Networks 37

(a) A partial node participa-
tion scenario with an SSI
of 0.34. Black circle repre-
sents the sink.

(b) A partial node participa-
tion scenario with an SSI of
0.57

0.5

0.6

0.7

0.8

0.9

1

1.1

0.34 0.38 0.57 0.66

Spatial Selectivity Index (SSI)

B
yt

es
Tr

an
sm

itt
ed

 (M
B

)

TAG SC

PDT KMB

(c) The impact of an in-
creasing SSI on the per-
formance of aggregation
algorithms for a 10% node
participation level. Stan-
dard deviations are shown.

Fig. 3. Various network configurations simulating an increase in the spatial selectivity index by
increasing the pocket dispersion for a 10% node participation level

scenarios, TAG and SC transmit up to 31% and 22% more data for the highest SSI
value. PDT also generates more data and shows an increase of 22% for the highest SSI
value, however it remains 15% energy efficient than both TAG and SC.

Impact of the Location of the Sink. In this experiment we analyze the effect of sink
position on PDT and other aggregation schemes. Figure 4 shows the performance of
each algorithm in a deployment where the same query is issued from different sink
positions. The chart shows that, for the given deployment, different sink positions affect
the overall cost only modestly: between initial and final sink position data transmission
rises by just 7% for both SC and TAG, while it rises to only 4% for PDT. The average
change in cost from one scenario to next is 1%, 2% and 3% for PDT, SC, and TAG
respectively.

The result is not surprising for the SC and PDT algorithms. In PDT the aggregation
tree is mostly determined by the pocket locations while the impact of sink location is
limited to the distance between the sink and the pockets closest to it. Similarly, SC
always uses fixed paths to aggregate data inside each cluster and the impact of sink
location is limited to the final phase where cluster heads have to route the aggregated
data to the sink. The bulk of data transmission in both cases occurs inside pockets (or
clusters) and as a result the impact of the position of sink is reduced. However, it is
important to note that the behavior of TAG fluctuates with the sink location. Among the
simulated scenarios, the second sink position is the best for TAG. At this position, the
sink is located in a way that paths to distant pockets naturally emerge from the closer
pockets, resulting in an increased number of participating nodes acting as intermediate
nodes in the tree. In other scenarios, the misalignment of the root of the tree, sink, with
the clusters increases the cost for TAG.

Spatial Layout and Communication Holes. Real SN deployments cannot stay fully
connected in a regular grid structure although many routing and in-network aggregation

38 L. Kulik, E. Tanin, and M. Umer

1

2

3

4

1

(a) The spatial distribution of the net-
work configuration and the various
positions of the sink

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1 8.6 13.8 20
Sink Centeroid Distance (SCD)

B
yt

es
Tr

an
sm

i tt
ed

(M
B

)

TAG SC PDT KMB

(b) The performance of the aggregation al-
gorithms for different sink positions with
an increasing distance to the global cen-
troid position for a 20% node participa-
tion level

Fig. 4. A network configuration with different sink positions for a 20% node participation level

algorithms are commonly tested on such basic structures. Due to constrained communi-
cation capabilities, a network might be disconnected at certain places leaving gaps that
we name as communication holes. In the context of in-network aggregation, if a given
network suffer from communication gaps while still remaining connected via alternate
communication routes, it is of interest to understand how the presence of holes effect
the performance of an aggregation algorithm.

To investigate the effect of communication holes we simulate three different SN con-
figurations. The configurations are shown in the deployment snapshots in Figure 5(a)–
Figure 5(c), where the bordered regions represent communication holes. In each of the
deployments, we set up a 10% pocketed participation scenario and Figure 5(d) shows
the performance of each algorithm in these spatial layouts. In TAG, we see that a collec-
tion of communication holes can affect the formation of the aggregation tree in one of
two ways. Firstly, the holes might break the most direct communication paths to pock-
ets and hence the tree has to invariably take a longer route. This effect can be observed
from the high cost of TAG in the first deployment (Figure 5(a)). However, a second
more interesting scenario is where the presence of holes actually reduces the communi-
cation cost by restricting the tree into a set of corridors that naturally spans the pockets.
The cost of TAG is reduced by 35% between the initial and final deployment.

SC is rather unaffected by the presence of holes where the change in its cost between
the initial and final deployments is just 5%. PDT also performs almost unaffected by
the presence of communication holes and shows a 10% reduction in data transmissions.
PDT might suffer in cases where there is a communication gap between two neighbor-
ing pockets in the trajectory.

4.4 Discussion

With extensive experiments, we presented the advantages of the location based
PDT algorithm for in-network aggregation over well-known in-network aggregation

Efficient Data Collection and Selective Queries in Sensor Networks 39

(a) A network configuration
with deployment co-
connectivity of 0.13 (five
holes relatively close to
the border)

(b) A network configura-
tion with deployment
co-connectivity of 0.24
(six randomly distributed
holes)

(c) A network configuration
with deployment co-
connectivity of 0.40 (one
large hole in the middle
of the network)

0.5

0.7

0.9

1.1

1.3

1.5

0.13 0.24 0.4
Co-connectivity (CC)

B
yt

es
Tr

an
sm

itt
ed

(M
B

) TAG SC PDT KMB

(d) The impact of different co-connectivities
on the aggregation algorithms for a 10%
node participation level

Fig. 5. Various network configurations simulating deployments with different types of communi-
cation holes and a 10% node participation level

algorithms in different SN settings. Our results validate the hypothesis that a variable
node participation scenario affects the performance of existing algorithms. In addition,
the spatial features of the scenario do also have an effect on the performance.

The performance of an algorithm in processing selective queries can be presented as
a function of the number of nodes the data collection paths utilize while collecting data
from the participating nodes. The high cost of the tree-based scheme in highly selective
queries can be explained by the random strategy used in the creation of an aggregation
tree where no query specific optimization is considered during the tree construction
process. We observe that for low node participation levels, the tree can improve its per-
formance when the query sink is aligned with the data pockets in a way that paths to
distant pockets naturally emerge from the pockets that are close to the sink. Similarly,
a tree-based strategy shows considerable improvement in performance if the communi-
cation channels in the network are constrained by holes. However, in realistic settings,
such cases may be rare and may not justify building a random tree for low participation
scenarios. In contrast to such special cases, PDT always identifies constrained regions
to grow a collection path in an efficient manner. Since the data collection is optimized to

40 L. Kulik, E. Tanin, and M. Umer

minimize the number of non-participating nodes en-route to data sources, PDT shows
an overall reduction in data transmission even in high node participation scenarios. The
experiments also show that the cost of PDT rises with increasing participation levels
or decreasing spatial correlation levels, however for long running queries with many
epochs, it is at least as good as the other well-known techniques.

As an interesting result, we observe that static clustering shows comparable results
to the tree-based strategy even though it is not configured as dynamically as the tree-
based strategy. Similar to the tree-based strategy, we also observe that static clustering
performs better if the location and size of pockets correlate with that of the statically
configured clusters and hence the data collection mechanism. The static clustering al-
gorithm proposes to define the cluster size parameter depending upon the degree of
spatial correlation in the network [17]. A major challenge in static clustering hence is
determining the correct cluster size for queries with complex, selective, predicates.

In our experiments where the node participation levels are low, data transmission by
the multi-path algorithm has greater costs than all the other schemes. This is an interest-
ing observation since in exhaustive participation scenarios multi-path achieves the same
number of messages per node as a tree [15]. Although the goal of the multi-path algo-
rithm is to achieve accuracy in lossy environments rather than increasing efficiency of
the aggregation strategy, the large cost of multi-path in low node participation scenarios
may require adopting a hybrid method such as [15].

One important feature of the PDT algorithm is that there is a trade-off between the
latency of data collection and the data transfer costs for a given query. In order to min-
imize the number of non-participating nodes in the aggregation process, PDT creates
paths with possibly higher latencies. Since in a sensor network saving energy is the
primary concern, reducing response time may not impact many query types. Thus, the
latency is not analyzed as a separate parameter with our experiments.

5 Selectivity Under Changing Conditions

A central task for SN deployments is the monitoring of naturally occurring phenomena.
Typical examples are the monitoring of wildlife paths in a natural reserve or the study
of cattle movements in a farm. These application domains highlights the need for robust
algorithms for selective query processing in SNs under continuously changing condi-
tions. We analyze two types of change: (1) change of the physical phenomena that is
monitored by the SN, and (2) change of the monitoring-network itself. The movement
monitoring of wildlife in a natural reserve falls into the first category, while sensor
failures are an example for the second category.

Changing physical phenomena pose a challenge for methods that are designed for
processing selective queries. For a given selective query, the set of sensors that need to
respond may be different at every sampling period. In fact, this behavior is expected as
the main purpose of monitoring tasks is to observe and record changes in the physical
phenomena in the first place. Thus, methods that are tailored for processing selective
queries need to be able to cope with changing sets of participating nodes that respond
to a query during the lifetime of that query.

Efficient Data Collection and Selective Queries in Sensor Networks 41

We are currently adapting and experimenting with the PDT algorithm under realistic
monitoring tasks as they occur with changing natural phenomena. The main insight for
processing selective queries under changing conditions is that different observed states
of the physical phenomena by a SN are in fact temporally as well as spatially corre-
lated. Hence, the sensor readings do not change abruptly and randomly between two
sampling periods but instead change occurs in relation to a source (or a set of sources),
which leads to predictable patterns. A typical example is temperature measurements: the
sensed temperature values are related to the Earth’s revolution around the Sun. Simi-
larly, cattle usually does not move randomly, but acts as a herd and moves within the
constraints of the pasture, preferring certain places during day and night. Thus, we ex-
pect that finding efficient data collection paths under changing participation levels can
be optimized using an approach that is based on PDT and includes predictive models.
For low frequency sampling, the change between two periods could hide its behavior.
However, as users are interested in capturing this behavior, the frequency of observa-
tions will be adjusted accordingly.

We envision two directions in adapting selectivity-aware algorithms such as PDT to
monitor continuously changing physical phenomena: first, a reactive model that would
only alter the data collection paths after a certain amount of change occurs in the sensor
readings; second, a proactive model that predicts the changes and adjusts the collection
path before the actual change occurs. A reactive algorithm might be easier to implement
and cheaper to maintain but will be less responsive to changing physical phenomena. A
proactive version, on the other hand, might be more difficult to maintain and develop,
but may be more adaptive to the changing phenomena. It seems likely that the overall
benefits of both strategies will differ for various application domains.

In addition to the change in the monitored physical phenomena, network parameters
under which a SN operates can also change. We distinguish uncontrolled and controlled
changes. An example for the first category is a production fault of some of the sensors
in the network. This can occur independently from the deployment strategy and the
physical conditions under which the SN operates. We assume that such situations rarely
create a major disruption, and more importantly, do not specifically effect selective
queries significantly. Recovery from such failures could be handled by the lower lay-
ers of the sensor node’s system software. Nevertheless, PDT algorithm can be easily
adapted for SNs where nodes can fail. The data collection paths can be tuned between
sampling periods to bypass failing nodes efficiently.

Energy depletion rates are an example of a controlled change in a SN. Certain sen-
sors may run out of energy faster than the others in a network, because they might be
used more often in data collection paths. This type of change in a network is observable.
Energy-aware algorithms that can adjust to these changes for routing already exist [25].
For selective query processing, techniques such as the PDT algorithm can also be ad-
justed to cope with similar situations. Location aggregation can be performed in tandem
with the aggregation of the energy levels. Thus, data collection paths, per query, can be
tailored for different energy levels of the nodes.

If the change in a SN is the result of a sustained use of certain set of sensor nodes,
another alternative could be considered: redeployment of the sensor nodes. An inter-
esting research direction is emerging with mobile sensor networks [26,27,28] where

42 L. Kulik, E. Tanin, and M. Umer

nodes can be redeployed for improving the quality of the data collected as well as for
the efficiency of collection of data in tandem with improving the SN life expectancy.

6 Conclusions

Efficient processing of selective queries in SNs is crucial for effective sustained moni-
toring of physical phenomena. Existing data collection methods in SNs do not take an
explicit position in processing selective queries and thus may not benefit from signifi-
cant possible energy savings. In our work, we have presented the benefits of optimizing
data collection paths and creating methods tailored for selective queries. We introduced
the PDT algorithm, an in-network data collection method for long running selective
queries. In extensive simulations, we showed that PDT is more energy efficient than
other major aggregation techniques under various scenarios. We have also observed
that the PDT algorithm computes a collection path to a well-known approximation of
the global optimum, i.e., the minimal Steiner tree.

The efficient data collection problem in partial node participation scenarios can be
modeled as a minimal Steiner tree problem. The PDT algorithm discovers pockets of
participating nodes using purely local information about the network and approximates
a minimum Steiner tree for data collection from these pockets. We show that this leads
to significant energy savings in different node participation scenarios. In addition, we
define spatial parameters to characterize a specific network deployment.

There are several research directions that we suggest as for future work. For a given
query, the node participation can change over time. For example, a change in the physi-
cal conditions for the sensed environment can lead to changes in node participation. For
a selective query this change can have an impact on multiple fronts, i.e., by increasing or
decreasing the node participation levels, or by changing the distribution of participating
nodes such as the emergence of new pockets or breakdown of old pockets. Therefore,
it is important to introduce robust strategies for data collection to continuously adapt to
these changes. On another front, changing network conditions can force the data col-
lection algorithms to look for better ways of gathering data. Node failures, as a trivial
case, can require algorithms, such as the PDT, to reconsider their choices in data col-
lection paths. If the change in network conditions can be controlled, such as the energy
depletion rates of different sensors, then adaptive selective query processing algorithms
for controlled energy consumption should be considered. One particularly promising
research direction is under scenarios when sensors have the capability of changing their
location. In this case, increasing the quality of the data that is being collected in a par-
tial node participation scenario while decreasing the data collection and node relocation
costs is an interesting research topic.

References

1. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)

2. Yao, Y., Gehrke, J.: Query processing for sensor networks. In: Proceedings of the Conference
on Innovative Data Systems, pp. 233–244 (2003)

Efficient Data Collection and Selective Queries in Sensor Networks 43

3. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation service
for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002)

4. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust aggrega-
tion in sensor networks. In: Proceedings of SenSys, pp. 250–262 (2004)

5. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query
processor for sensor networks. In: Proceedings of SIGMOD, pp. 491–502 (2003)

6. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems in multi-
cast routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)

7. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15,
141–145 (1981)

8. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs.
Math Japonica 24, 573–577 (1980)

9. Silberstein, A., Braynard, R., Yang, J.: Constraint chaining: on energy-efficient continuous
monitoring in sensor networks. In: Proceedings of SIGMOD, pp. 157–168 (2006)

10. Chou, J., Petrovic, D., Ramachandran, K.: A distributed and adaptive signal processing ap-
proach to reducing energy consumption in sensor networks. In: Proceedings of INFOCOM,
vol. 2, pp. 1054–1062 (2003)

11. Bonfils, B.J., Bonnet, P.: Adaptive and Decentralized Operator Placement for In-Network
Query Processing. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 47–62.
Springer, Heidelberg (2003)

12. Bawa, M., Gionis, A., Garcia-Molina, H., Motwani, R.: The price of validity in dynamic
networks. In: Proceedings of the SIGMOD, pp. 515–526 (2004)

13. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques for sensor
databases. In: Proceedings of ICDE, pp. 449–460 (2004)

14. Cardei, M., Wu, J.: Energy-efficient coverage problems in wireless ad hoc sensor networks.
Computer Communications 29(4), 413–420 (2006)

15. Manjhi, A., Nath, S., Gibbons, P.B.: Tributaries and deltas: efficient and robust aggregation
in sensor network streams. In: Proceedings of SIGMOD, pp. 287–298 (2005)

16. Chu, D., Deshpande, A., Hellerstein, J., Hong, W.: Approximate data collection in sensor
networks using probabilistic models. In: Proceedings of ICDE, p. 48 (2006)

17. Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation on routing
with compression in wireless sensor networks. In: Proceedings of IPSN, pp. 28–35 (2004)

18. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad hoc rout-
ing. In: Proceedings of MobiCom, pp. 70–84 (2001)

19. Yoon, S., Shahabi, C.: Exploiting spatial correlation towards an energy efficient clustered
aggregation technique (CAG). In: Proceedings of the ICC, pp. 82–98 (2005)

20. Gupta, H., Navda, V., Das, S.R., Chowdhary, V.: Efficient gathering of correlated data in
sensor networks. In: Proceedings of MobiHoc, pp. 402–413 (2005)

21. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in wireless
sensor networks. In: Proceedings of ICDCSW, pp. 575–578 (2002)

22. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings
of SODA, pp. 770–779 (2000)

23. Doar, M., Leslie, I.M.: How bad is naive multicast routing? In: Proceedings of INFOCOM,
pp. 82–89 (1993)

24. NS-2: The network simulator NS-2 documentation,
http://www.isi.edu/nsnam/ns/ns-documentation.html

25. Yu, Y., Govindan, R., Estrin, D.: Geographical and energy aware routing: A recursive data
dissemination protocol for wireless sensor networks. Technical Report TR-01-0023, Univer-
sity of California, Los Angeles, Computer Science Department (2001)

http://www.isi.edu/nsnam/ns/ns-documentation.html

44 L. Kulik, E. Tanin, and M. Umer

26. Somasundara, A.A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastruc-
ture for low energy embedded networks. IEEE Transactions on Mobile Computing 5(8),
958–973 (2006)

27. Wang, G., Cao, G., Porta, T.F.L.: Movement-assisted sensor deployment. IEEE Transactions
on Mobile Computing 5(6), 640–652 (2006)

28. Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrish-
nan, H., Madden, S.: CarTel: a distributed mobile sensor computing system. In: Proceedings
of SenSys, pp. 125–138 (2006)

Exploiting Spatio-temporal Correlations for

Data Processing in Sensor Networks

Antonios Deligiannakis1 and Yannis Kotidis2

1 University of Athens
adeli@di.uoa.gr

2 Athens University of Economics and Business
kotidis@aueb.gr

Abstract. Recent advances in microelectronics have made feasible the
deployment of sensor networks for a variety of monitoring and surveil-
lance tasks. In such tasks the state of the network is evaluated either
at regular intervals at a base-station, which constitutes a centralized lo-
cation where the data collected by the sensor nodes can be collected
and processed, or continuously through the use of, potentially multiple,
continuous queries. In order to increase the network lifetime, multiple
techniques have been proposed in order to reduce the data transmitted
in the network, since the data communication often constitutes the main
source of energy drain in sensor networks. In this work we discuss several
data reduction techniques that can be applied for energy-efficient query
processing in sensor network applications. All of our proposed techniques
seek to identify and take into account the characteristics of the collected
data. Depending on the nature of the monitoring application at hand,
the targeted data characteristics may range from simply monitoring the
variance of a node’s measurements to identifying spatio-temporal corre-
lations amongst the values collected by the sensor nodes.

1 Introduction

Recent advances in wireless technologies and microelectronics have made fea-
sible, both from a technological as well as an economical point of view, the
deployment of densely distributed sensor networks [61]. Although today’s sen-
sor nodes have relatively small processing and storage capabilities, driven by the
economy of scale, it is already observed that both are increasing at a rate similar
to Moore’s law.

In applications where sensors are powered by small batteries and replacing
them is either too expensive or impossible (i.e., sensors thrown over a hostile
environment), designing energy efficient protocols is essential to increase the
lifetime of the sensor network. Since radio operation is by far the biggest factor of
energy drain in sensor nodes [18], minimizing the number of transmissions is vital
in data-centric applications. Even in the case when sensor nodes are attached to
larger devices with ample power supply, reducing bandwidth consumption may
still be important due to the wireless, multi-hop nature of communication and
the short-range radios usually installed in the nodes.

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 45–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

46 A. Deligiannakis and Y. Kotidis

Data-centric applications thus need to devise novel dissemination processes for
minimizing the number of messages exchanged amongst the nodes. Nevertheless,
in densely distributed sensor networks there is an abundance of information
that can be collected. In order to minimize the volume of the transmitted data,
we can apply two well known ideas aggregation and approximation in order to
exploit spatio-temporal correlations in the readings obtained by the nodes in the
network.

In-network aggregation is more suitable for exploratory, continuous queries
that need to obtain a live estimate of some (aggregated) quantity. For example,
sensors deployed in a metropolitan area can be used to obtain estimates on
the number of observed vehicles. Temperature sensors in a warehouse can be
used to keep track of the average and maximum temperature for each floor of
the building. Often, aggregated readings over a large number of sensors nodes
show little variance, providing a great opportunity for reducing the number
of (re)transmissions by the nodes when individual measurements change only
slightly (as in temperature readings) or changes in measurements of neighboring
nodes effectively cancel out (as in vehicle tracking applications).

Approximation techniques, in the form of lossy data compression are more
suitable for the collection of historical data through long-term queries. As an
example, consider sensors dispersed in a wild forest, collecting meteorological
measurements (such as pressure, humidity, temperature) for the purpose of
obtaining a long term historical record and building models on the observed
eco-system [2,42,67]. Each sensor generates a multi-valued data feed and of-
ten substantial compression can be achieved by exploiting natural correlations
among these feeds (such as in case of pressure and humidity measurements).
In such cases, sensor nodes are mostly “silent” (thus preserving energy) and
periodically process and transmit large batches of their measurements to the
monitoring station for further processing and archiving.

While the preferred method of data reduction, either by aggregation or by
approximation, of the underlying measurements can be decided based on the
application needs, there is a lot of room for optimization at the network level
as well. Sensor networks are inherently redundant; a typical deployment uses
a lot of redundant sensor nodes to cope with node or link failures [4]. Thus,
extracting measurements from all nodes in the network for the purpose of an-
swering a posed query may be both extremely expensive and unnecessary. In
a data-centric network, nodes can coordinate with their neighbors and elect a
small set of representative nodes among themselves, using a localized, data-driven
bidding process [35]. These representative nodes constitute a network snapshot
that can, in turn, answer posed queries while reducing substantially the energy
consumption in the network. These nodes are also used as an alternative means
of answering a posed query when nodes and network links fail, thus providing
unambiguous data access to the applications.

This article proceeds as follows. Section 2 provides a brief overview of the char-
acteristics of sensor nodes. Section 3 presents our Self-Based Regression (SBR)
algorithm for the compression of historical measurements in sensor

Exploiting Spatio-temporal Correlations for Data Processing 47

network applications, while Section 4 presents our framework for the approx-
imate evaluation of continuous aggregate queries. Section 5 presents our tech-
niques for creating a network snapshot that can be used to efficiently evaluate
queries about the observed values of the sensor nodes, while Section 6 presents
some related work in the area of sensor networks. Finally, Section 7 contains
concluding remarks and future directions.

2 Characteristics of Sensor Nodes

Depending on the targeted application, sensor nodes with widely different char-
acteristics may be used. Even though the processing and memory capabilities of
sensor nodes are still limited, in recent years they have increased at a rate similar
to Moore’s law. On the other hand, the amount of energy stored in the batteries
used in such nodes has exhibited a mere 2-3% annual growth. Since replacing
the sensor batteries may be very expensive, and sometimes impossible due to
their unattended deployment, unless the sensors are attached to and powered
by a larger unit, designing energy-efficient protocols is essential to increase the
lifetime of the sensor network.

The actual energy consumption by each sensor node depends on its current
state. In general, each sensor node can be in one of the following states:

– low-duty cycle, where the sensor is in sleep mode and a minimal amount of
energy is consumed.

– idle listening, where the sensor node is listening for possible data intended
for it.

– processing, where the sensor node performs computation based on its ob-
tained measurements and its received data.

– receiving/transmitting, where the sensor node either receives or transmits
data or control messages.

The cost of processing can be significant but is generally much lower than the
cost of transmission. For example, in the Berkeley MICA nodes sending one bit
of data costs as much energy as 1,000 CPU instructions [41]. For long-distance
radios, the transmission cost dominates the receiving and idle listening costs.
For short-range radios, these costs are comparable. For instance, in the Berkeley
MICA2 motes the power consumption ratio of transmitting/receiving at 433MHz
with RF signal power of 1mW is 1.41:1 [64], while this ratio can become even
larger than 3:1 for the same type of sensor when the radio transmission power
is increased [54]. To increase the lifetime of the network, some common goals
of sensor network applications are (in order of importance) to maximize the
time when a node is in a low-duty cycle, to reduce the amount of transmitted
and received data, and to reduce the idle listening time. We note here that
reducing the size of the transmitted data results in multiple benefits, since this
also corresponds to a reduction of not only control messages, but also leads to
fewer message collisions and retransmissions. Moreover, nodes that refrain from
transmitting messages may switch to the low-duty cycle mode faster, therefore
further reducing their energy drain.

48 A. Deligiannakis and Y. Kotidis

380

400

420

440

460

480

500

520

540

560

580

600

0 20 40 60 80 100 120

"Industrial"
"Insurance"

Fig. 1. Example of two correlated signals
(Stock Market)

420

440

460

480

500

520

540

560

580

600

380 400 420 440 460 480 500 520 540 560 580

"Industrial_vs_Insurance"

Fig. 2. XY scatter plot of Industrial (X
axis) vs Insurance (Y axis)

3 A Lossy Compression Framework for Historical
Measurements

Many real signals observed by the sensors, such as temperature, dew-point, pres-
sure etc. are naturally correlated. The same is often true in other domains. For
instance, stock market indexes or foreign currencies often exhibit strong corre-
lations. In Figure 1 we plot the average Industrial and Insurance indexes from
the New York stock market for 128 consecutive days. Both indexes show similar
fluctuations, a clear sign of strong correlation. Figure 2 depicts a XY scatter
plot of the same values. This plot is created by pairing values of the Industrial
(X-coordinate) and Insurance (Y-coordinate) indexes of the same day and plot-
ting these points in a two-dimensional plane. The strong correlation among these
values makes most points lie on a straight line. This observation suggests the
following compression scheme, inspired from regression theory. Assuming that
the Industrial index (call it X) is given to us in a time-series of 128 values,
we can approximate the other time-series (Insurance: Y) as Y ′ = a ∗ X + b.
The coefficients a and b are determined by the condition that the sum of the
square residuals, or equivalently the L2 error norm ||Y ′ − Y ||2, is minimized.
This is nothing more than standard linear regression. However, unlike previous
methods, we will not attempt to approximate each time-series independently
using regression. In Figure 1 we see that the series themselves are not linear, i.e.,
they would be poorly approximated with a linear model. Instead, we will use
regression to approximate piece-wise correlations of each series to a base signal
X that we will choose accordingly. In the example of Figure 2, the base signal
can be the Industrial index (X) and the approximation of the Insurance index
will be just two values (a, b). In practice the base signal will be much smaller
than the complete time series, since it only needs to capture the “important”
trends of the target signal Y . For instance, in case Y is periodic, a sample of
the period would suffice.

Exploiting Spatio-temporal Correlations for Data Processing 49

1

2

N

Base Signal

BaseM

M

Measurements Compressed Sensor Data Updates Sensor Data Update Log

Base Signal Updates Base Signal Update Log

Sensor Base Station

Fig. 3. Transfer of approximate data values and of the base signal from each sensor to
the base station

3.1 The SBR Framework

In the general case, each sensor monitors N distinct quantities Yi, 1 ≤ i ≤
N . Without loss of generality we assume that measurements are sampled with
the same rate. When enough data is collected (for instance, when the sensor
memory buffers become full), the latest NxM values are processed and each row
i (of length M) is approximated by a much smaller set of Bi values, i.e. Bi �
M . The resulting “compressed” representation, of total size equal to

∑N
i=1 Bi,

is then transmitted to the base station. The base station maintains the data
in this compact representation by appending the latest “chunk” to a log file.
A separate file exists for each sensor that is in contact with the base station.
This process is illustrated in Figure 3. Each sensor allocates a small amount of
memory of size Mbase for what we call the base signal. This is a compact ordered
collection of values of prominent features that we extract from the recorded
values and are used as a base reference in the approximate representation that is
transmitted to the base station. The data values that the sensor transmits to the
base station are encoded using the in-memory values of the base signal at the
time of the transmission. The base signal may be updated at each transmission
to ensure that it will be able to capture newly observed data features and that
the obtained approximation will be of good quality. When such updates occur,
they are transmitted along with the data values and appended in a special log
file that is unique for each sensor.

The Self-Based Regression algorithm (SBR) breaks the data intervals Yi into
smaller data segments

Ii[k..l] = (Yi[k], . . . Yi[l])

and then pairs each one to an interval of the base signal of equal length. As
discussed below, the base signal is simply the concatenation of several intervals
of the same length W extracted from the data. The data interval Ii is shifted
over the base signal and at each position s we compute the regression parameters
for the approximation

50 A. Deligiannakis and Y. Kotidis

Îi[j] = a × X [s + j − k] + b, k ≤ j ≤ l

and retain the shift value s = s∗ that minimizes the sum-squared error of the
approximation. The algorithm starts with a single data interval for each row
of the collected data (Yi). In each iteration, the interval with the largest error
in the approximation is selected and divided in two halves. The compressed
representation of a data interval Ii[k..l] consists of four values: the shift position
s∗ that minimizes the error of the approximation, the two regression parameters
a,b and the start of the data interval k in Yi. The base station will sort the
intervals based on their start position and, thus, there is no need to transmit
their ending position. Given a target budget B (size of compressed data) we can
use at most B/4 intervals using this representation.

3.2 Base Signal Construction

We can think of the base signal as a dictionary of features used to describe the
data values. The richer the pool of features we store in the base signal the better
the approximation. On the other hand, these features have to be (i) kept in the
memory of the sensor to be used as a reference by the data-reduction algorithm
and (ii) sent to the base station in order for it to be able to reconstruct the
values. Thus, for a target bandwidth constraint B (number of values that can be
transmitted), performing more insert and update operations on the base signal
implies less bandwidth remaining for approximating the data values, and, thus,
fewer data intervals that can be obtained from the recursive process described
above.

We can avoid the need of transmitting the base signal by agreeing a-priori
on a set of functions that will be used in the regression process. For instance,
a set of cosine functions (as in the Distinct Cosine Transform) can be used
for constructing a “virtual” base signal that does not need to be communicated.
Similarly, using the identity function X [i] = i reduces the compression algorithm
to standard linear regression of each data interval. However, such an approach
makes assumptions that may not hold for the data at hand. In [11] we have
proposed a process for generating the base signal from the data values. The
key idea is to break the measurements into intervals of the same length W .
Each interval (termed candidate base interval) is assigned a score based on the
reduction in the error of the approximation obtained by adding the interval to
the base signal. Using a greedy algorithm we can select the top-few candidate
intervals, up to the amount of available memory Mbase. Then a binary-search
process is used to eventually decide how many of those candidate intervals need
to be retained.

The search space is illustrated in Figure 4 for three real data sets, discussed
in [11]. The figure plots the error of only the initial transmission as the size of
the base signal is varied, manually, from 1 to 30 intervals. We further show the
selection of the binary-search process. For presentation purposes, the errors for
each data set have been divided by the error of the approximation when using
just one interval. We notice that initially, by adding more candidate intervals

Exploiting Spatio-temporal Correlations for Data Processing 51

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Base Intervals

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E
rr

or
 C

om
pa

re
d

to
 U

si
ng

 1
 B

as
e

In
te

rv
al

Stock Data
Phone Data
Weather Data

SBR Selection

Fig. 4. SSE error vs base signal size

to the base signal the error of the approximation is reduced. However, after a
point, adding more intervals that need to be transmitted to the base station
leaves insufficient budget for the recursive process that splits the data, and thus,
the error of the approximation is eventually increased.

3.3 Analysis and Evaluation

For a data set containing n = N×M measurements to approximate the complete
SBR algorithm takes O(n1.5) time and requires linear space, while its running
time scales linearly to the size of both the transmitted data and the base signal.
The algorithm is invoked periodically, when enough data has been collected.
Moreover, our work [11] has demonstrated that, after the initial transmissions,
the base signal is already of good quality and few intervals are inserted in it. This
provides us with the choice not to update the base signal in many subsequent
invocations, thus reducing the algorithm’s running time, in these cases, to only
a linear dependency on n.

To illustrate the accuracy achieved by the SBR algorithm against standard
approximation techniques such as Wavelets, Histograms and the Discreet Co-
sine Transform (DCT), we used in [11], among other data sets, a weather data
set that contains the air temperature, dewpoint temperature, wind speed, wind
peak, solar irradiance and relative humidity weather measurements obtained
from a station in the university of Washington, and for the year 2002. For this
data set we selected the first 40,960 records and then split the data measurements
of each signal into ten files of 4,096 values each, in order to simulate multiple
transmissions. We then varied the compression ratio (size of the transmitted
data over the data size n) from 5% to 50% and present in Table 1 the total sum

52 A. Deligiannakis and Y. Kotidis

Table 1. Total SSE Varying the Compression Ratio for the Weather Data Set

Weather Data

Compression (245,760 total values)

Ratio SBR Wavelets DCT Histograms

5% 317,238 519,303 8,703,192 7,661,293

10% 103,633 200,501 4,923,294 3,375,518

15% 54,219 125,449 3,515,698 2,219,533

20% 30,946 87,118 2,643,229 1,471,421

25% 18,600 63,105 2,198,455 946,735

30% 11,558 46,833 1,598,451 594,644

35% 7,161 35,275 1,366,211 410,208

40% 4,603 26,824 1,112,117 288,127

45% 2,964 20,502 905,422 236,947

50% 1,861 15,762 768,568 160,079

squared error achieved by all techniques. In all cases, SBR produces significantly
more accurate results than the other approximations.

3.4 Extensions

In [14] we present extensions to the basic SBR scheme that we describe here.
These extensions allow the nodes to organize in groups based on an adaptation
of the HEED protocol [65] and elect within each group a group leader that
instruments the execution of each SBR instance in the nodes of its group and
also handles the final transmission of the compressed data to the base station.
This form of localized processing allows the nodes to exploit spatial correlations
and results in a reduction of the error of the approximation by at least an order of
magnitude compared to the case when nodes individually compress and transmit
their data.

4 Approximate In-Network Data Aggregation

The data aggregation process in sensor networks consists of several steps. First,
the posed query is disseminated through the network, in search of nodes col-
lecting data relevant to the query. Each sensor then selects one of the nodes
through which it received the announcement as its parent node. The resulting
structure is often referred to as the aggregation tree. Non-leaf nodes of that tree
aggregate the values of their children before transmitting the aggregate result
to their parents. In [40], after the aggregation tree has been created, the nodes
carefully schedule the periods when they transmit and receive data. The idea is
for a parent node to be listening for values from its child nodes within specific
intervals of each epoch and then transmit upwards a single partial aggregate for
the whole subtree.

Exploiting Spatio-temporal Correlations for Data Processing 53

2

E_Tot = 14 E_Tot = 45 E_Tot = 26 E_Tot = 17 E_Tot = 38

2E_Tot = 8 E_Tot = 8.53

E_Tot = 16.51

E = 01

E = 3 2 E = 2.5 3

E = 1 4 E = 4 5 E = 2 6 E = 1 7 E = 3 8

1

4 5 6 7 8

3

Fig. 5. Error Filters on Aggregation Tree

In order to limit the number of transmitted messages and, thus, the energy
consumption in sensor networks during the computation of continuous aggregate
queries, our algorithms install error filters on the nodes of the aggregation tree.
Each node Ni transmits the partial aggregate that it computes at each epoch
for its subtree only if this value deviates by more than the maximum error Ei

of the node’s filter from the last transmitted partial aggregate. This method
allows nodes to refrain from transmitting messages about small changes in the
value of their partial aggregate. The Ei values determine the maximum deviation
E Toti of the reported from the true aggregate value at each node. For example,
for the SUM aggregate, this deviation at the monitoring node is upper bounded
(ignoring message losses) by:

∑
i Ei.

A sample aggregation tree is depicted in Figure 5. As our work [12] has demon-
strated, allowing a small error in the reported aggregate can lead to dramatic
bandwidth (and thus energy) savings. The challenge is, of course, given the maxi-
mum error tolerated by the monitoring node, to calculate and periodically adjust
the node filters in order to minimize the bandwidth consumption.

4.1 Algorithmic Challenges

When designing adaptive algorithms for in-network data aggregation in sensor
networks, one has to keep in mind several challenges/goals. First, communicating
individual node statistics is very expensive, since this information cannot be
aggregated inside the tree, and may outweigh the benefits of approximate data
aggregation, namely the reduction in the size of the transmitted data. Thus, our
algorithm should not try to estimate the number of messages generated by each
node’s transmissions, since this depends on where this message is aggregated
with messages from other nodes. Second, the error budget should be distributed
to the nodes that are expected to reduce their bandwidth consumption the most
by such a process. This benefit depends on neither the magnitude of the partial
aggregate values of the node nor the node’s number of transmissions over a
period, but on the magnitude of the changes on the calculated partial aggregate.

54 A. Deligiannakis and Y. Kotidis

expand
shrink expand

shrinkFactor * W

shrink

Width

Number of Messages

C

C
Upd

W+dWW

Fig. 6. Potential Gain of a Node

Isolating nodes with large variance on their partial aggregate and redistributing
their error to other nodes is crucial for the effectiveness of our algorithm [12].
Finally, in the case of nodes where the transmitted differences from their children
often result in small changes on the partial aggregate value, our algorithm should
be able to identify this fact. We deal with this latter challenge by applying the
error filters on the calculated partial aggregate values and not on each node’s
individual measurements. For the first two challenges, we collect a set of easily
computed and composable statistics at each node. These statistics are used for
the periodic adjustment of the error filters.

4.2 Algorithm Overview

Every Upd epochs all nodes shrink the widths of their filters by a shrinking factor
0 < shrinkFactor < 1. After this process, the monitoring node has an error bud-
get of size E Global×(1−shrinkFactor), where E Global is the maximum error
of the application, that it can redistribute recursively to the nodes of the network.
Each node, between two consecutive update periods, calculates its potential gain
as follows: At each epoch the node keeps track of the number of transmissions
Cshrink that it would have performed with the default (smaller) filter at the
next update period of width shrinkFactor ×Wi, where Wi = 2×Ei. The node
also calculates the corresponding number of transmissions Cexpand with a larger
filter of width Wi +dW and sets its potential gain to Gaini = Cshrink−Cexpand.
This process is illustrated in Figure 6. The cumulative gain of a node’s subtree
is then calculated as the sum of the cumulative gains of the node’s children and
the node’s potential gain. This requires only the transmission of the cumulative
gains (a single value for each node) at the last epoch before the new update pe-
riod. The available error budget is then distributed top-down proportionally, at
each node, to each subtree’s cumulative gain. In this process, nodes that exhibit
large variance in their partial aggregate values will exhibit small potential gains
and, thus, their error will gradually shrink and be redistributed to nodes that
will benefit from an increase in their error filter.

We note here that the dual problem of minimizing the application maxi-
mum error given a bandwidth or energy constraint is also very interesting. This

Exploiting Spatio-temporal Correlations for Data Processing 55

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Error Threshold (E_Global)

"Uni"
"BBA"
"PGA"

Fig. 7. Reduction in messages for synthetic data set

problem is discussed in [13] and is more complicated, though, because the con-
trolled quantity at each node (the width of its error filter) is different from the
monitored quantity (the bandwidth/energy consumption) and the bandwidth
needs to be carefully computed, monitored and then disseminated amongst the
sensor nodes.

4.3 Experimental Evaluation

We used a balanced aggregation tree with 5 levels and a fan-out of 4 (341 nodes
overall), where all the nodes collected measurements relevant to the query. In
the first experiment, the measurements of all the nodes followed a random walk
pattern, each with a randomly assigned step size in the range (0 . . . 2]. To capture
the scenario where nodes update their measurements with different frequencies,
20% of the nodes update their measurements at each epoch, while the remaining
sensors make a random step with a fixed probability of 1% during an epoch.
In Figure 7 we plot the total number of messages in the network (y-axis) for
40,000 epochs when varying the error constraint E Global from 100 to 2,000
(8% is terms of relative error). Depending on E Global, our PGA (Potential
Gains Adjustment) algorithm results in up to 4.8 times fewer messages than an
adaptation of the algorithm proposed by Olston in [45], that we termed BBA,
and up to 6.4 times fewer messages than a uniform allocation policy (Uni) where
the error is partitioned uniformly amongst all nodes. These differences arise from
the ability of PGA to place, judiciously, filters on passive intermediate sensor
nodes and exploit negative correlations on their subtree based on the computed
potential gains. Algorithm BBA may also place filters on the intermediate nodes
(when the residual mode is used) but the selection of the widths of the filters
based on the burden scores of the nodes was typically not especially successful
in our experiments.

56 A. Deligiannakis and Y. Kotidis

5 Design of Data-Centric Sensor Networks

Sensor networks are inherently dynamic. Such networks must adapt to a wide
variety of challenges imposed by the uncontrolled environment in which they
operate. As nodes become cheaper to manufacture and operate, one way of
addressing the challenges imposed on unattended networks is redundancy [4].
Redundant nodes ensure network coverage in regions with non-uniform commu-
nication density due to environmental dynamics. Redundancy further increases
the amount of data that can be mined in large-scale networks.

Writing data-driven applications in such a dynamic environment can be daunt-
ing. The major challenge is to design localized algorithms that will perform most
of the processing in the network itself in order to reduce traffic and, thus, pre-
serve energy. Instead of designing database applications that need to hassle with
low-level networking details, we envision the use of data-centric networks that
allow transparent access to the collected measurements in a unified way. For
instance, when queried nodes fail, the network should self-configure to use re-
dundant stand-by nodes as in [18], under the condition that the new nodes
contain fairly similar measurements, where similarity needs to be quantified in
an application-meaningful way [35]. This can be achieved using a localized mode
of operation in which nodes coordinate with their neighbors and elect a small set
of representative nodes among themselves. Such a set of representatives, termed
network snapshot [35], has many advantages.

– The location and measurements of the representative nodes provide a picture
of the value distribution in the network. By choosing an error metric (such
as sum-squared or relative error) and using different threshold values to
express similarity amongst the sensor node measurements we can obtain
different snapshots of the network at different resolutions, depending on the
error threshold used.

– The network snapshot can be used for answering user queries in a more
energy-efficient way. The data reduction techniques that we discussed in
Sections 3 and 4 aim at reducing the flow of data in the network by either
suppressing update messages or compressing long data streams. The net-
work snapshot is an orthogonal optimization that can further reduce energy
drain during query processing by reducing the number of nodes that need to
respond to user queries. When a user query can tolerate a small error in the
computation, the network can use the representative nodes and compile a
quick answer from only a fraction of the nodes that a normal query execution
would require. We call such queries snapshot queries.

– An elected representative node can take over for another node in the vicinity
that may have failed or is temporarily out of reach. Because selection of
representatives is quantitative this allows for a more accurate computation
than when representatives are selected based only on proximity.

– A localized computation of representative nodes can react quickly to changes
in the network. For instance, nodes (including the representatives) may fail
at random. It is important that the network can self-heal in the case of

Exploiting Spatio-temporal Correlations for Data Processing 57

node-failures or some other catastrophic events. In a data-driven mode of
operation, we are also interested in changes in the behavior of a node. In such
case the network should re-configure and revise the selected representatives,
when necessary. What is important is that, as we demonstrate in [35], these
computations can be performed in the network with only a small number
(up to six) of exchanged messages among the nodes.

5.1 Snapshot Overview

A sensor node Ni maintains a data model for capturing the distribution of values
of the measurements of its neighbors. This is achieved by snooping (with a small
probability) values broadcast by its neighbor node Nj in response to a query
or, by using periodic announcements sent by Nj . One may devise different data
models, with varying degrees of complexity, for this process. In [11,35] we have
proposed modeling the correlations amongst the measurements of the nodes
using linear regression. Regression models are simple both in terms of space and
time complexity. As is demonstrated in [35], our algorithms can operate when the
available memory for storing these models in the sensor is as small as a few bytes.
Furthermore, by modeling the correlations amongst the values of the nodes we
avoid making assumptions on the distribution of the data values collected by
the sensors that may not hold in practice. The only assumption made is that
values of neighboring nodes are to some extent correlated. This is true for many
applications of interest like collection of meteorological data, acoustic data etc,
as discussed in Section 3.

Using the data model it maintains, sensor node Ni provides an estimate x̂j of
the measurement xj of its neighbor Nj. Given an error metric d() and a threshold
value T , node Ni can represent node Nj if d(xj , x̂j) ≤ T . Function d() is provided
by the application. Some common choices include (i) relative error: d(xj , x̂j) =

|xj−x̂j|
max(s,|xj |) , where s > 0 is a sanity bound for the case xj=0, (ii) absolute error:
d(xj , x̂j) = |xj − x̂j | and (iii) sum-squared error: d(xj , x̂j) = (xj − x̂j)2.

Through a localized election process (see [35] for details) the nodes in the
network pick a set of representative nodes of size n1. Depending on the threshold
value T , the error metric and the actual measurements on the sensors, n1 can be
significantly smaller than the number of nodes in the network. An example of this
process is demonstrated in Figure 8 where the representatives for a simulated
network of 100 nodes are shown. Dark nodes in the Figure are representative
nodes. There are lines drawn from a node Ni to a node Nj that Ni represents.
Nodes with no lines attached to them represent themselves (the default choice).

An aggregate computation like SUM can be handled by the representative
nodes that will in-turn provide estimates on the nodes Nj they represent using
their models. Another scenario is to use the representative of a node on an aggre-
gate or direct query, when that node is out-of-reach because of some unexpected
technical problem or due to severe energy constraints. Thus, query processing
can take advantage of the unambiguous data access provided by the network. Of
course, one can ignore the layer of representatives and access the sensors directly,

58 A. Deligiannakis and Y. Kotidis

Fig. 8. Example of Network Snapshot

at the penalty of (i) draining more energy, since a lot more nodes will have be
to accessed for the same query and (ii) having to handle within the application
node failures, redundancy etc.

The selection of representatives is not static but is being revised overtime in
an adaptive fashion. An obvious cause is the failure of a representative node. In
other cases, the model built by Ni to describe xj might get outdated or fail, due
to some unexpected change in the data distribution. In either case, the network
will self-heal using the following simple protocol. Node Nj periodically sends a
heart-beat message to its representative Ni including its current measurement.
If Ni does not respond, or its estimate x̂j for xj is not accurate (d(xj , x̂j) > T)
then Nj initiates a local re-evaluation process inviting candidate representatives
from its neighborhood, leading to the selection of a new representative node
(that may be itself). This heart-beat message is also used by Ni to fine-tune its
model of Nj .

Under an unreliable communication protocol it is possible that this process
may lead to spurious representatives. For instance node Ni may never hear the
messages sent by node Nj due to an obstacle in their direct path. It may thus
assume that it still represents node Nj while the network has elected another
representative. This can be detected and corrected by having time-stamps de-
scribing the time that a node Ni was elected as the representative of Nj and using
the latest representative based on these time-stamps. In TinyOS nodes have an
external clock that is used for synchronization with their neighbors [40]. In lack
of properly synchronized clocks among the sensor nodes, one can use a global
counter like the epoch-id of a continuous query. This filtering and self-correction
is performed by the network, transparently from the application.

Exploiting Spatio-temporal Correlations for Data Processing 59

5.2 Examples of Snapshot Queries

Recent proposals [40,63] have suggested the use of SQL for data acquisition and
processing. The obvious advantage of using a declarative language is greater flex-
ibility over hand-coded programs that are pre-installed at the sensor nodes [41].
In addition embedded database systems like TinyDB can provide energy-based
query optimization because of their tight integration with the node’s operations.

Basic queries in sensor networks consist of a SELECT-FROM-WHERE clause
(supporting joins and aggregation). For instance, in our running example of
collecting weather data a typical query may be

SELECT loc, temperature
FROM sensors
WHERE loc in SHOUTH_EAST_QUANDRANT
SAMPLE INTERVAL 1sec for 5min
USE SNAPSHOT

This is an example of a drill-through query, sampling temperature readings
every 1 second and lasting 5 minutes. For this example we assume that each
node has a unique location-id loc and that nodes are location-aware, being able
to process the spatial filter “in SHOUTH EAST QUANDRANT”. Location can
be obtained using inexpensive GPS receivers embedded in the nodes, or by proper
coordination among the nodes, using techniques like those proposed in [50,52].
Location is a significant attribute of a node in an unattended system. For many
applications like habitat monitoring, spatial filters may be the most common
predicate.

The new extension presented in the query above is the USE SNAPSHOT
clause, denoting that the query may be answered by the representative set of
nodes. An example of an aggregate query that is using the snapshot for comput-
ing the average and maximum temperature readings in the same area is given
below

SELECT avg(temperature), max(temperature)
FROM sensors
WHERE loc in SHOUTH_EAST_QUANDRANT
SAMPLE INTERVAL 1sec for 5min
USE SNAPSHOT

5.3 Evidence of Savings During Snapshot Queries

We used a simulated network of 100 sensor nodes, randomly placed in a [0 . . . 1)×
[0 . . . 1) two-dimensional area. For each node, we generated values following a
random walk pattern, each with a randomly assigned step size in the range
(0 . . . 1]. The initial value of each node was chosen uniformly in range [0 . . . 1000).
We then randomly partitioned the nodes into K classes. Nodes belonging to the
same class i were making a random step (upwards or downwards) with the same

60 A. Deligiannakis and Y. Kotidis

Table 2. Reduction in number of nodes participating in a spatial snapshot query

K=1 K=100

Transmission Range Transmission Range

Query Range 0.2 0.7 0.2 0.7

1% 11% 29% 3% 7%

10% 38% 77% 16% 24%

50% 52% 91% 23% 49%

probability Pmove[i]. These probabilities were chosen uniformly in range [0.2 . . .1]
(we excluded values less than 0.2 to make data more volatile).

We tested aggregate queries over random parts of the network. For each query
a sink node was chosen randomly. Then, using the flooding mechanism described
in [40] an aggregation tree was formed, rooted at the sink node. The sensor nodes
Ni whose measures were aggregated using that tree, were chosen using spatial
predicate “locationi in [x − W

2 , x + W
2] × [y − W

2 , y + W
2]”, where (x, y) is a

random point in the [0 . . . 1) × [0 . . . 1) plane.
We created a random set of 200 such queries and executed each query in the

set twice: once as a regular query and once as a snapshot query. We counted
the number of nodes participated in each execution, denoted as Nregular and
Nsnapshot respectively. In Table 2 we show the savings Nregular−Nsnapshot

Nregular
provided

on the average by the snapshot queries (the error threshold was one). We note
that when snapshot queries are used, a non-representative node may still be
used for routing the aggregate and this is included in the numbers shown. We
made two runs, one with a single class and another when each node was on a
class of its own (K=100). We varied the size W of the range queries as shown in
the table. We further tested two transmission ranges for the nodes. The shorter
transmission range results in more representatives and taller aggregation trees,
as more hops are required to reach the sink node. In Table 2 we can see that
snapshot queries provide substantial savings in terms of the number of nodes
participating in a query, especially on large spatial queries. For all runs, the
aggregation tree was created using the vanilla method of [10,40]. One can modify
the protocol to favor (when applicable) representative nodes for routing the
messages. This will result in further reduction in the number of sensor nodes
used during snapshot queries than those presented in Table 2.

6 Related Work

In recent years, there has been a significant body of work in the area of sen-
sor networks. For instance, the networking aspects of wireless sensor nodes is a
topic that has intrigued the networking community. Because of the unattended
operation of sensor networks, nodes must be able to co-operate to perform the
task at hand. Some of the most important topics addressed include network

Exploiting Spatio-temporal Correlations for Data Processing 61

self-configuration [4,35,65], discovery [18,27] and computation of energy-efficient
data routing paths [6,28,39,40,55,57,65].

In the database community there are ongoing projects for infusing database
primitives in the operations of these networks. For instance, TinyDB [41] and
Cougar [63] have suggested the use of SQL for data acquisition and process-
ing. The obvious advantage of using a declarative language is greater flexibility
over hand-coded programs that are pre-installed at the sensor nodes [41]. In-
network data aggregation is another topic that has created a flurry of propos-
als [12,16,19,30,40,53,63]. The main idea is to build an aggregation tree, which
partial results will follow. With proper synchronization [40], non-leaf nodes of
the tree aggregate the values of their children before transmitting a single ag-
gregate result to their parents, thus substantially reducing the flow of messages
in the network. Alternative, gossip-based techniques have also been investigated
in [3,33]. In [10,35] the authors have also looked at the problems of packet loss
and node failures during data processing. Recently, proposals for combining data
modeling with data acquisition in order to help reduce the cost of query pro-
cessing have been suggested [17,35,37]. For example, [17,37] build probabilistic
models of the observed data and then use these models to probe the sensors for
their measurements in a limited amount of epochs, depending on the confidence
of the constructed model. Distributed storage management is another topic that
brings together the networking and database communities [16,21,51].

Many of these fundamental techniques have been devised to support event-
based monitoring applications. For example, in animal tracking, an event such as
the presence of an animal can be determined by matching the sensor readings to
stored patterns [31]. The authors of [62] propose an event detection mechanism
based on matching the contour maps of in-network sensory data distributions.
In [47], kernel-based techniques are used to detect abnormal behavior in sensor
readings. In [26] the authors describe the implementation of a real system based
on Mica2 motes for surveillance of moving vehicles. In [36] a framework for
computing user-defined events that are in proximity is presented.

Query processing in sensor networks has some connection with the work on
continuous queries in data streams [7,29,44,59,66]. The work of [46] studies the
trade-off between precision and performance when querying replicated, cached
data. In [45] the users register continuous queries with strict precision constraints
at a central stream processor, which, in turn installs filters at the remote data
sources. These filters adapt to changes in the streams to minimize update rates.
Online algorithms for minimizing the update cost while the query can be an-
swered within an error bound are presented in [34]. The authors of [9] study a
probabilistic query evaluation method that places appropriate confidence in the
query answer to quantify the uncertainty of the recorded data values.

There is a vast related literature on approximate processing techniques. The
AQUA project explored sampling-based techniques for building synopses and
using them to provide approximate answers at a fraction of the time that a real
answer would require [22]. Histograms are used by query optimizers to estimate
the selectivity of queries, and recently in tools for providing fast approximate

62 A. Deligiannakis and Y. Kotidis

answers to queries [23,24,32,48,49,58]. Wavelets are a mathematical tool for the
hierarchical decomposition of functions, with applications in image and signal
processing [56]. More recently, Wavelets have been applied successfully in an-
swering range-sum aggregate queries over data cubes [60], in selectivity estima-
tion [43] and in approximate query processing [5,15,20,25]. The Discrete Cosine
Transform (DCT) [1] constitutes the basis of the mpeg encoding algorithm and
has also been used to construct compressed multidimensional histograms [38].
Linear regression has been recently used in [8] for on-line multidimensional anal-
ysis of data streams.

7 Conclusions and Future Directions

We have described several techniques for the reduction of the transmitted data in
several sensor network applications, ranging from the communication of histori-
cal measurements to answering approximate aggregate continuous and snapshot
queries. While these techniques aim to prolong the lifetime of the network, there
are several issues that need to be additionally addressed. Little work has been
done on the optimization of multiple concurrent continuous queries over sensor
networks. The work of Olston et al. in [45] may provide some helpful solutions
in this area. Moreover, in the presence of nodes with different transmission fre-
quencies, as in the case of approximate aggregate query processing, several com-
munication and synchronization algorithms may need to be revisited [63]. For
example, the selection of the aggregation tree is often performed by assuming
equal frequency of transmissions by all nodes. However, it might be more ben-
eficial to prevent nodes that exhibit large variance in their measurements from
appearing in lower levels of the tree, since such nodes often trigger transmissions
on their ancestors as well. Such optimizations may lead to even larger energy
savings.

References

1. Ahmed, N., Natarakan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. on
Computers C-23 (1974)

2. Ailamaki, A., Faloutsos, C., Fischbeck, P.S., Small, M.J., Van Briesen, J.: An
environmental sensor network to determine drinking water quality and security.
SIGMOD Record 32(4), 47–52 (2003)

3. Bawa, M., Garcia-Molina, H., Gionis, A., Motwani, R.: Estimating Aggregates on
a Peer-to-Peer Network. Technical report, Stanford (2003)

4. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring sEnsor Network
Topologies. In: INFOCOM (2002)

5. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate Query Pro-
cessing Using Wavelets. In: Proceedings of the 26th VLDB Conference (2000)

6. Chang, J.-H., Tassiulas, L.: Energy Conserving Routing in Wireless Ad-hoc Net-
works. In: INFOCOM (2000)

7. Chen, J., Dewitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. In: Proceedings of ACM SIGMOD Confer-
ence (2000)

Exploiting Spatio-temporal Correlations for Data Processing 63

8. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-Dimensional Regression
Analysis of Time-Series Data Streams. In: Proceedings of VLDB (2002)

9. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Probabilistic Queries over
Imprecise Data. In: Proceedings of ACM SIGMOD Conference (2003)

10. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate Aggregation Techniques
for Sensor Databases. In: ICDE (2004)

11. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Compressing Historical Informa-
tion in Sensor Networks. In: Proceedings of ACM SIGMOD Conference (2004)

12. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical in-Network Data
Aggregation with Quality Guarantees. In: Lindner, W., Mesiti, M., Türker, C.,
Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268. Springer, Heidelberg
(2004)

13. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Bandwidth Constrained Queries
in Sensor Networks. The VLDB Journal (2007)

14. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Dissemination of Compressed
Historical Information in Sensor Networks. The VLDB Journal (2007)

15. Deligiannakis, A., Roussopoulos, N.: Extended Wavelets for Multiple Measures.
In: Proceedings of SIGMOD Conference, pp. 229–240 (2003)

16. Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., Yao, Y.: The Cougar Project:
A Work In Progress Report. SIGMOD Record 32(4), 53–59 (2003)

17. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-
Driven Data Acquisition in Sensor Networks. In: Proceedings of VLDB (2004)

18. Estrin, D., Govindan, R., Heidermann, J., Kumar, S.: Next Century Challenges:
Scalable Coordination in Sensor Networks. In: MobiCOM (1999)

19. Ganesan, D., Estrin, D., Heidermann, J.: DIMENSIONS: Why do we need a new
Data Handling architecture for Sensor Networks? In: HotNets-I (2002)

20. Garofalakis, M., Gibbons, P.B.: Probabilistic Wavelet Synopses. ACM Trans.
Database Syst. 29(1), 43–90 (2004)

21. Ghose, A., Grossklags, J., Chuang, J.: Resilient Data-Centric Storage in Wireless
Ad-Hoc Sensor Networks. In: Mobile Data Management (2003)

22. Gibbons, P.B., Matias, Y.: New Sampling-Based Summary Statistics for Improving
Approximate Query Answers. In: Proceedings ACM SIGMOD International Con-
ference on Management of Data, Seattle, Washington, pp. 331–342 (June 1998)

23. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast,
Small-Space Algorithms for Approximate Histogram Maintenance. In: ACM STOC
(2002)

24. Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Optimal and Approximate
Computation of Summary Statistics for Range Aggregates. In: ACM PODS, pp.
227–236 (2001)

25. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: One-Pass Wavelet De-
compositions of Data Streams. Trans. Knowl. Data Eng. 15(3), 541–554 (2003)

26. He, T., Krishnamurthy, S., Stankovic, J., Abdelzaher, T., Luo, L., Stoleru, R.,
Yan, T., Gu, L., Hui, J., Krogh, B.: An Energy-Efficient Surveillance System Using
Wireless Sensor Networks. In: MobiSys. (2004)

27. Heidermann, J., Silva, F., Intanagonwiwat, C., Govindanand, R., Estrin, D., Gane-
san, D.: Building Efficient Wireless Sensor Networks with Low-Level Naming. In:
SOSP (2001)

28. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Commu-
nication Protocol for Wireless Microsensor Networks. In: Hawaii Conference on
System Sciences (2000)

64 A. Deligiannakis and Y. Kotidis

29. Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Descpande, A., Hildrum, K.,
Madden, S., Raman, V., Shah, M.A.: Adaptive Query Processing: Technology in
Evolution. IEEE DE Bulletin 23 (2000)

30. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidermann, J.: Impact of Network
Density on Data Aggregation in Wireless Sensor Networks. In: ICDCS (2002)

31. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks. In: MOBICOM. (2000)

32. Ioannidis, Y.E., Poosala, V.: Histogram-Based Approximation of Set-Valued Query
Answers. In: Proceedings of the 25th VLDB Conference (2000)

33. Kempe, D., Dobra, A., Gehrke, J.: Gossip-Based Computation of Aggregate Infor-
mation. In: Proceedings of FOCS (2003)

34. Khanna, S., Tan, W.C.: On Computing Functions with Uncertainty. In: Proceed-
ings of ACM PODS Conference (2001)

35. Kotidis, Y.: Snapshot Queries: Towards Data-Centric Sensor Networks. In: Pro-
ceedings of ICDE (2005)

36. Kotidis, Y.: Processing Promixity Queries in Sensor Networks. In: Proceedings of
DMSN (2006)

37. Lazaridis, I., Mehrotra, S.: Approximate Selection Queries over Imprecise Data.
In: ICDE (2004)

38. Lee, J., Kim, D., Chung, C.: Multi-dimensional Selectivity Estimation Using Com-
pressed Histogram Information. In: Proceedings of ACM SIGMOD Conference
(1999)

39. Lindsey, S., Raghavendra, C.S.: Pegasis: Power-Efficient Gathering in Sensor In-
formation Systems. In: IEEE Aerospace Conference (2002)

40. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A Tiny Aggregation
Service for ad hoc Sensor Networks. In: OSDI Conf. (2002)

41. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The Design of an Acqui-
sitional Query processor for Sensor Networks. In: Proceedings of ACM SIGMOD
Conference (2003)

42. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless Sen-
sor Networks for Habitat Monitoring. In: WSNA 2002, pp. 88–97 (2002)

43. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-Based Histograms for Selectivity Es-
timation. In: Proceedings of ACM SIGMOD Conference (1998)

44. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,
Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management,
and Approximation in a Data Stream Management System. In: Proceedings of
CIDR (2003)

45. Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over
Distributed Data Streams. In: Proceedings of ACM SIGMOD Conference (2003)

46. Olston, C., Widom, J.: Offering a Precision-Performance Tradeoff for Aggregation
Queries over Replicated Data. In: Proceedings of VLDB (2000)

47. Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Distributed Devi-
ation Detection in Sensor Networks. SIGMOD Rec. 32(4) (2003)

48. Poosala, V., Ioannidis, Y.E.: Selectivity Estimation Without the Attribute Value
Independence Assumption. In: Proceedings of the 23th VLDB Conference (1997)

49. Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved Histograms for
Selectivity Estimation of Range Predicates. In: Proceedings of ACM SIGMOD
Conference (1996)

50. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket Location-Support
System. In: MOBICOM (2000)

Exploiting Spatio-temporal Correlations for Data Processing 65

51. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.:
GHT: a Geographic Hash Table for Data-Centric Storage. In: Proceedings of the
1st ACM international workshop on Wireless sensor networks and applications
(2002)

52. Savarese, C., Rabaey, J.M., Beutel, J.: Locationing in Distributed Ad-hoc Wireless
Sensor Networks. In: ICASSP (2001)

53. Sharaf, A., Beaver, J., Labrinidis, A., Chrysanthis, P.: Balancing Energy Efficiency
and Quality of Aggregate Data in Sensor Networks. VLDB Journal (2004)

54. Shnayder, V., Hempstead, M., Chen, B., Allen, G.W., Welsh, M.: Simulating the
Power Consumption of Large-Scale Sensor Network Applications. In: Sensys. (2004)

55. Singh, S., Woo, M., Raghavendra, C.S.: Power-Aware Routing in Mobile Ad Hoc
Networks. In: ACM/IEEE International Conference on Mobile Computing and
Networking (1998)

56. Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Computer Graphics -
Theory and Applications. Morgan Kaufmann Publishers, Inc., San Francisco (1996)

57. Tan, H.O., Korpeoglu, I.: Power Efficient Data Gathering and Aggregation in Wire-
less Sensor Networks. SIGMOD Record 32(4) (2003)

58. Thaper, N., Guha, S., Indyk, P., Koudas, N.: Dynamic Multidimensional His-
tograms. In: Proceedings of ACM SIGMOD Conference (2002)

59. Viglas, S.D., Naughton, J.F.: Rate-based Query Optimization for Streaming Infor-
mation Sources. In: Proceedings of ACM SIGMOD Conference (2002)

60. Vitter, J.S., Wang, M.: Approximate Computation of Multidimensional Aggregates
of Sparse Data Using Wavelets. In: Proceedings of ACM SIGMOD Conference
(1999)

61. Warneke, B., Last, M., Liebowitz, B., Pister, K.S.J.: Smart Dust: Communicating
with a Cubic-Millimeter Computer. IEEE Computer 34(1), 44–51 (2001)

62. Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour Map Matching for Event Detection
in Sensor Networks. In: SIGMOD (2006)

63. Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in
Sensor Networks. SIGMOD Record 31(3), 9–18 (2002)

64. Ye, W., Heidermann, J.: Medium Access Control in Wireless Sensor Networks.
Technical report, USC/ISI (2003)

65. Younis, O., Fahmy, S.: HEED: A Hybrid, Energy-Efficient, Distributed Clustering
Approach for Ad Hoc Sensor Networks. IEEE Transactions on Mobile Comput-
ing 3(4) (2004)

66. Zdonik, S.B., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Bal-
akrishnan, H.: The Aurora and Medusa Projects. IEEE DE Bulletin (2003)

67. Zeinalipour-Yazti, D., Neema, S., Gunopulos, D., Kalogeraki, V., Najjar, W.: Data
Acquision in Sensor Networks with Large Memories. In: IEEE International Work-
shop on Networking Meets Databases, Tokyo, Japan (April 2005)

Load Management and High Availability in the

Borealis Distributed Stream Processing Engine

Nesime Tatbul1, Yanif Ahmad2, Uğur Çetintemel2, Jeong-Hyon Hwang2,
Ying Xing2, and Stan Zdonik2

1 ETH Zürich, Department of Computer Science, Zürich, Switzerland
tatbul@inf.ethz.ch

2 Brown University, Department of Computer Science, Providence, RI, USA
{yna,ugur,jhhwang,yx,sbz}@cs.brown.edu

Abstract. Borealis is a distributed stream processing engine that has
been developed at Brandeis University, Brown University, and MIT. It
extends the first generation of data stream processing systems with ad-
vanced capabilities such as distributed operation, scalability with time-
varying load, high availability against failures, and dynamic data and
query modifications. In this paper, we focus on aspects that are related
to load management and high availability in Borealis. We describe our al-
gorithms for balanced and resilient load distribution, scalable distributed
load shedding, and cooperative and self-configuring high availability. We
also present experimental results from our prototype implementation
showing the effectiveness of these algorithms.

1 Introduction

In the past several years, data streaming applications have become very common.
The broad range of applications include financial data analysis [1], network traffic
monitoring [2], sensor-based environmental monitoring [3], GPS-based location
tracking [4], RFID-based asset tracking [5], and so forth. These applications
typically monitor real-time events and generate high volumes of continuous data
at time-varying rates. Distributed stream processing systems have emerged to
address the performance and reliability needs of these applications (e.g., [6], [7],
[8], [9]).

Borealis is a distributed stream processing engine that has been developed at
Brandeis University, Brown University, and MIT. It builds on our earlier research
efforts in the area of stream processing - Aurora and Medusa [10]. Aurora pro-
vides the core stream processing functionality for Borealis, whereas Medusa en-
ables inter-node communication. Based on the needs of recently emerging stream
processing applications, Borealis extends both of these systems in non-trivial and
critical ways to provide a number of advanced capabilities. More specifically, Bo-
realis extends the basic Aurora stream processing system with the ability to:

• operate in a distributed fashion,
• dynamically modify various data and query properties without disrupting

the system’s run-time operation,

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 66–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Load Management and High Availability 67

• dynamically optimize processing to scale with changing load and resource
availability in a heterogeneous environment, and

• tolerate node and network failures for high availability.

In this paper, we focus on two key aspects of distributed operation in Borealis.
Distributing stream processing across multiple machines mainly provides the
following benefits:

• Scalability. The system can scale up and deal with increasing load or time-
varying load spikes with the addition of new computational resources.

• High availability. Multiple processing nodes can monitor the system health,
and can perform fail-over and recovery in the case of node failures.

In the rest of this paper, we first present a brief overview of the Borealis
system. Then we summarize our work on three different aspects of distributed
operation in Borealis: load distribution (Section 3), distributed load shedding
(Section 4), and high availability (Section 5). Finally, we briefly discuss our
plans for future research and conclude.

2 Borealis System Overview

Borealis accepts a collection of continuous queries, represents them as one large
network of query operators (also known as a query diagram), and distributes
the processing of these queries across multiple server nodes. Sensor networks
can also participate in query processing behind a sensor proxy interface which
acts as another Borealis node [11].

Queries are defined through a graphical editor, while important run-time statis-
tics such as CPU utilizations of the servers, latencies of the system outputs, and
percent data delivery at the outputs are visualized through our performance mon-
itor [12]. Figure 1 provides a snapshot from the editor part of our system GUI.

Each node runs a Borealis server whose major components are shown in
Figure 2. The query processor (QP) forms the essential piece where local query
execution takes place. Most of the core QP functionality is provided by parts
inherited from Aurora [13]. I/O queues feed input streams into the QP and route
tuples between remote Borealis nodes and clients.

The admin module is responsible for controlling the local QP, performing
tasks such as setting up queries and migrating query diagram fragments. This
module also coordinates with the local optimizer to provide performance im-
provements on a running diagram. The local optimizer employs various tactics
including, changing local scheduling policies, modifying operator behavior on the
fly via special control messages, and locally discarding low-utility tuples via load
shedding when the node is overloaded.

The QP also contains the storage manager, which is responsible for storage
and retrieval of data that flows through the arcs of the local query diagram,
including memory buffers and connection point (CP) data views. Lastly, the

68 N. Tatbul et al.

Fig. 1. Borealis query editor

Transport Independent RPC (XML,TCP,Local)

QueryProcessorHA
MonitorCatalog

NH
Optimizer

Admin
LocalGlobal

IOQueues

Control DataMeta−data

Borealis Node

Load
Shedder

Local Optimizer
Priority

Scheduler

Storage
Persistent

Processor
Box

Storage Manager

Data Interface Control Interface

Query Processor
Catalog

Local

(Buffers and CP data)

Fig. 2. Borealis system architecture

local catalog stores query diagram description and metadata, and is accessible
by all the local components.

Other than the QP, a Borealis node has modules which communicate with
their respective peers on other Borealis nodes to take collaborative actions. The
neighborhood optimizer uses local load information as well as information from
other neighborhood optimizers to improve load balance between nodes or to shed
load in a coordinated fashion. The high availability (HA) modules on different
nodes monitor each other and take over processing for one another in case of
failures. The local monitor collects performance-related statistics as the local
system runs to report to local and neighborhood optimizer modules. The global
catalog provides access to a single logical representation of the complete query
diagram.

In addition to the basic node architecture shown in Figure 2, a certain Bore-
alis server can be designated as the coordinator node to perform global system
monitoring and to run various global optimization algorithms, such as global
load distribution and global load shedding. Thus, Borealis essentially provides
a three-tier monitoring and optimization hierarchy (local, neighborhood, and
global) that works in a complementary fashion [7].

Load Management and High Availability 69

3 Load Distribution in Borealis

Distributed stream processing engines can process more data at higher speeds by
distributing the query load onto multiple servers. The careful mapping of query
operators onto available processing nodes is critical in enduring unpredictable
load spikes, which otherwise might cause temporary overload and increase in
latencies. Thus, the problem involves both coming up with a good initial oper-
ator placement as well as dynamically changing this placement as data arrival
rates change. Borealis provides two complementary mechanisms to deal with this
problem:

• a correlation-based operator distribution algorithm, which exploits the rela-
tionship between the load variations of different operators, as well as nodes,
in determining and dynamically adjusting the placement of the operators in
a balanced way, and

• a resilient operator distribution algorithm, whose primary goal is to provide
a static operator placement plan that can withstand the largest possible set
of input rate combinations without the need for redistribution.

In this section, we briefly summarize these mechanisms.

3.1 Correlation-Based Operator Distribution

To minimize end-to-end latency in a push-based system such as Borealis, it is
important, but not enough, to evenly distribute the average load among the
servers. The variation of the load is also a key factor in determining the system
performance. For example, consider two operator chains. Each chain consists of
two identical operators with cost c and selectivity 1. When the average input
rates of the two input streams (r1 and r2) are the same, the average loads of all
operators are the same. Now consider two operator mapping plans on two nodes.
In the first plan, we put each of the two connected operator chains on the same
node (Figure 3(a)). In the second plan, we place each operator of a chain on a
different node (Figure 3(b)). There is no difference between these two plans from
the load balancing point of view. However, suppose that the load bursts of the
two input streams happen at different times. For example, assume that r1 = r
when r2 = 2r, or r1 = 2r when r2 = r. Then these two plans result in very
different performance. In the connected plan, there is a clear imbalance between
the two nodes in both burst scenarios (Node1’s load is 2cr, when Node2’s load is
4cr, and vice versa); whereas in the cut plan, the load balance is maintained for
both of the scenarios (Both nodes have the load of 3cr in both cases). Since the
two bursts are out of phase, the cut plan which groups operators with low load
correlation together, ensures that the load variation on each node is kept small.
The simulation result presented in Figure 3(c), which shows that the cut plan
can achieve smaller latency with increasing load, also confirms this observation.
This simple example clearly shows that, not only the average load, but also the
load variation must be considered to achieve a good operator placement that
can withstand bursts.

70 N. Tatbul et al.

c c

Node 2

c c

Node 1

r2

r1

(a) Connected plan

c c

c c

Node 1 Node 2
r1

r2

(b) Cut plan

0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Average Node CPU Utilization

A
ve

ra
ge

 E
nd

−
to

−
E

nd
 L

at
en

cy
 (

m
s)

CONNECTED
CUT

(c) Latencies

Fig. 3. Comparison of different operator mapping plans with fluctuating load

In Borealis, we try to balance the average load among the processing nodes, but
we also try to minimize the load variance on each node. For the latter goal, we ex-
ploit the correlation of stream rates across the operators. More specifically, we rep-
resent operator load as fixed-length time series. The correlation of two time series is
measured by the correlation coefficient, which a real number between -1 and 1. In-
tuitively, when two time series have a positive correlation coefficient, if the value of
one time series at a certain index is relatively large in comparison to its mean, then
the value of the other time series at the same index also tends to be relatively large.
On the other hand, if the correlation coefficient is negative, then when the value of
one time series is relatively large, the value of the other tends to be relatively small.
Our algorithm is inspired by the observation that if the correlation coefficient of the
load time series of two operators is small, then putting these operators together on
the same node helps in minimizing the load variance.

The intuition of correlation is also the foundation of the other idea in our
algorithm: when making operator allocation decisions, we try to maximize the
correlation coefficient between the load statistics of different nodes. This is be-
cause moving operators will result in temporary poor performance due to the
execution suspension of those operators. However, if the load time series of two
nodes have large correlation coefficient, then their load levels are naturally bal-
anced even when the load changes. By maximizing the average load correlation
between all node pairs, we can minimize the number of load migrations needed.

As we showed in an earlier paper [14], minimizing the average load variance
in fact also helps in maximizing the average load correlation, and vice versa.
Therefore, the main goal of our load distribution algorithms is to produce a
balanced operator mapping plan where the average operator load variance is
minimized or the average node load correlation is maximized. More formally,
assume that there are n nodes in the system. Let Xi denote the load time series
of node Ni and ρij denote the correlation coefficient of Xi and Xj for 1 ≤ i, j ≤ n.
We want to find an operator mapping plan with the following properties:

• EX1 ≈ EX2 ≈ ... ≈ EXk

• 1
n

n∑

i=1

varXi is minimized, or

•
∑

1≤i<j≤n

ρij is maximized.

Load Management and High Availability 71

Finding the optimal solution to this problem requires comparison of all pos-
sible mapping plans and is NP hard. Instead, we developed a number of greedy
heuristics which helps us find sub-optimal solutions in polynomial time, and
which can experimentally be shown to perform very close to the optimal.

The Borealis coordinator periodically collects load statistics from all nodes,
orders nodes by their average load, and pairs them by grouping the ith node with
the (n − i + 1)th node in the ordered list. If the load difference between a node
pair is above a certain threshold, then operators need to be moved between those
nodes to balance their average load in a way that also minimizes their average
load variance. Given such a pair, the load movement can be either one-way or
two-way:

• In the one-way case, only the more loaded node is allowed to offload half
of its excess load to its mate; the purpose is to reduce the load movement
overhead. The operators of the more loaded node (say N1) are ordered based
on a score, and the operator with the largest score is moved across to the other
node (say N2) in a greedy fashion until the balance is achieved. The score
for an operator o represents the difference between the correlation coefficient
between o and the rest of the operators at N1, and the correlation coefficient
between o and the rest of operators at N2. A larger score makes o a desirable
candidate for movement, since this way, the average load variance for the
pair can be decreased.

• In the two-way case, all operators on both members of the pair can be moved
across freely. Initially, both nodes are treated as empty nodes. At each iter-
ation, we select an operator from the pool of unmapped operators with the
largest score and place it at the less loaded node. We continue until all op-
erators have been mapped to one of the nodes. This two-way algorithm can
result in a better mapping plan than the one-way algorithm; however, the
load movement overhead can be unnecessarily high, especially when the for-
mer mapping was relatively good. To address this problem, we add a selective
exchange step to our algorithm which would only allow the two-way move-
ment of operators whose score is above certain threshold. By varying this
threshold, we can control the tradeoff between the amount of load moved
and the quality of the resulting mapping plan.

The above correlation-based load redistribution algorithms can also be mod-
ified to handle the case of initial load distribution when all nodes are empty.
The algorithm is very similar to the two-way case except that the score for-
mula should be generalized to n nodes rather than considering a single pair. The
algorithm in this case is global rather than pair-wise.

In Figure 4, we compare our correlation-based load distribution algorithm
against two other load balancing alternatives (randomized load balancing
(RAND-GLB) and largest load first load balancing (LLF-GLB)). Figure 4(a)
shows that our algorithm maintains low latency with increasing load, and Figure
4(b) confirms that the resulting average load variance is also much smaller (and
very close to the optimal) for our algorithm. A detailed description of all of our

72 N. Tatbul et al.

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

System Load Level

La
te

nc
y

R
at

io
RAND−GLB
LLF−GLB
COR−GLB

(a) Latency ratio

0.8 0.85 0.9 0.95 0.98
0

0.05

0.1

0.15

0.2

0.25

System Load Level

A
ve

ra
ge

 L
oa

d
S

ta
nd

ar
d

D
ev

ia
tio

n

MINIMUM
COR−GLB
RAND−GLB
LLF−GLB

(b) Average load variance

Fig. 4. Performance comparison for correlation-based global algorithm with others

dynamic load distribution algorithms along with their theoretical and experimen-
tal performance evaluation can be found in our earlier work [14].

3.2 Resilient Operator Distribution

Dynamic load distribution techniques described in the previous subsection for
balancing load and minimizing latency in the face of unpredictable load vari-
ations are more suitable for medium-to-long term load variations, since they
persist for relatively longer periods of time and are thus rather easy to cap-
ture. Furthermore, the overhead of load redistribution is amortized over time.
On the other hand, short-term load fluctuations are both difficult to capture
due to their transient nature and too heavy-weight to handle through operator
redistribution. To give a concrete example, the base overhead of run-time op-
erator migration in Borealis is measured to be on the order of a few hundred
milliseconds (higher for operators with larger state) [15]. Thus, for these kinds
of scenarios where operator movement is rather prohibitive, Borealis provides a
static resilient operator distribution algorithm.

A resilient operator distribution (ROD) is one that does not become over-
loaded easily in the face of bursty and fluctuating input rates. This is achieved
by optimizing the system to handle as many load points as possible so that it
can tolerate those load conditions without the need for operator migration. More
specifically, we model the load of each operator as a function of operator costs,
selectivities, and system input stream rates. For given input stream rates and a
given operator distribution plan, the system is either feasible (i.e., none of the
nodes are overloaded), or infeasible (i.e., at least one node is overloaded). The
set of all feasible input rate combinations defines a feasible set. Thus, our goal is
to find an operator distribution plan that maximizes the size of this feasible set.

Our approach to this problem is based on a linear algebraic model. In this
model, we consider a multi-dimensional space of input stream rates, where each
processing node is represented by a hyperplane that consists of all input rate
points that render this node fully loaded. These node hyperplanes collectively

Load Management and High Availability 73

determine the shape and size of the feasible set. Thus, our goal is to find the
“ideal” hyperplane which gives us the largest feasible set size. We mathematically
showed that this “ideal” feasible set can be achieved if all node hyperplanes are
identical (i.e., if the load of each stream is perfectly balanced across all nodes)
[15]. However, the ideal feasible set may not always be achievable in practice.
Therefore, our main goal is to make the node hyperplanes as close to the ideal
hyperplane as possible.

Enumerating all possible operator distribution plans and comparing their fea-
sible set sizes to find an optimal plan is intractable when the number of inputs
or the number of operators is large [15]. Therefore, we developed a greedy ROD
algorithm which is driven by the following two heuristics:

• MaxMin Axis Distance (MMAD). Push the intersection points of the
node hyperplanes along each axis, towards those of the ideal hyperplane.

• MaxMin Plane Distance (MMPD). Push node hyperplanes directly to-
wards the ideal hyperplane.

Intuitively, MMAD tries to balance the load of each input stream across the
nodes in proportion to their CPU capacities, whereas MMPD focuses on the
combination of the impact of different input streams on each node to avoid
creating bottlenecks at certain nodes. In other words, MMPD tries to balance
the load of the nodes in proportion to their CPU capacities for multiple workload
points.

The ROD algorithm appropriately combines these heuristics and consists of
the following two steps:

• Operator Ordering. Sort the operators in descending order of their effect
on load.

• Operator Assignment. Iteratively assign each operator in the ordered list
to a node such that the reduction in the final feasible set size would be
minimal. Given an operator o, it is assigned to one of the nodes using a
combination of our MMAD and MMPD heuristics. More specifically, at each
assignment step, we first separate the nodes into two classes. In Class I, we
include those nodes that will not lead to a reduction in the final feasible set
size, whereas in Class II, we have the remaining ones. If Class I is not empty,
then we choose a node from this class (either randomly or based on another
orthogonal criteria [15]), and assign o to this node. Otherwise, o is assigned
to the node from Class II which will bear the maximum plane distance. In
other words, when we assign operators to Class I nodes, we push the axis
intersection points closer to those of the ideal hyperplane as in the MMAD
heuristic. On the other hand, when we assign them to Class II nodes, we
follow the MMPD heuristic and select the node which has the largest plane
distance.

In Figure 5, we show two base results from our performance study on the Bo-
realis prototype running on 10 homogeneous server nodes. We used aggregation-
based network traffic monitoring queries. Figure 5(a) compares the feasible set

74 N. Tatbul et al.

25 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Operators

A
ve

ra
ge

 F
ea

si
bl

e
S

et
 S

iz
e

R
at

io
 (

A
 /

Id
ea

l)

A = ROD
A = Correlation−Based
A = LLF−Load−Balancing
A = Random
A = Connected−Load−Balancing

(a) Resiliency

1 2 3 3.5
0

50

100

150

200

250

Input Stream Rate Multiplier
A

ve
ra

ge
 E

nd
−

to
−

E
nd

 L
at

en
cy

 (
m

s) ROD
Correlation−Based
LLF−Load−Balancing
Max−Rate−Load−Balancing
Random
Connected−Load−Balancing

(b) Average latency

Fig. 5. ROD performance

size achieved by different operator distribution algorithms (relative to the ideal).
ROD clearly outperforms all of the other alternatives, including our correlation-
based load balancing algorithm that was summarized in Section 3.1. As the
number of operators increases, ROD approaches to the ideal case and most of
the other algorithms also improve because there is a greater chance that the load
of a given input stream will be spread across multiple nodes. Figure 5(b) com-
pares average end-to-end latency achieved as a result of applying various load
distribution algorithms as the CPU utilization is increased from 26% to 79%
(corresponding to input rates multipliers of 1 and 3.5, respectively). Since ROD
produces the largest feasible set size and since it balances the node loads consid-
ering multiple input rate combinations, it performs and scales better than the
other alternatives. Our results demonstrate that, for a representative workload
and data set, ROD (i) sustains longer and is more resilient than the alternatives,
and (ii) despite its high resiliency, it does not sacrifice latency performance.

We have also extended our ROD algorithm to handle nonlinear load models, to
exploit additional workload information, and to consider communication costs.
Details of ROD and its extensions together with their detailed performance
results can be found in our earlier work [15].

4 Distributed Load Shedding in Borealis

Data streams can arrive in bursts and provisioning the system for the worst-
case load (which can be orders of magnitude higher than the average load) is
in general not economically sensible. On the other hand, bursts in data rates
may create overload on servers which slows down processing and causes delayed
outputs. This is unacceptable in terms of quality of service of real-time stream-
ing applications, where low-latency is a major requirement. Borealis provides

Load Management and High Availability 75

load shedding techniques to make sure that all servers always operate below
their processing capacity limits. This is achieved by inserting load reducing drop
operators at selected arcs of the query network. Dropped tuples result in ap-
proximate answers. Therefore, the main goal in our load shedding algorithms is
to minimize the degradation in answer quality 1.

In a distributed stream processing system, each node acts like a workload
generator for its downstream nodes. Therefore, resource management decisions
at any node will affect the characteristics of the workload received by its children.
Because of this load dependency between nodes, a given node must figure out
the effect of its load shedding actions on the load levels of its descendant nodes.
Load shedding actions at all nodes along the chain will collectively determine the
quality degradation at the outputs. This makes the problem more challenging
than its centralized counterpart [16].

cost = 1
sel = 1.0 sel = 1.0

sel = 1.0
cost = 1 cost = 3

cost = 2

sel = 1.0

Node BNode A

r1 = 1

r2 = 1

Fig. 6. Motivating example

To illustrate, consider the simple query network in Figure 6, with two queries
that are distributed onto two processing nodes A and B. Each small box repre-
sents a subquery with a certain cost and selectivity. Cost reflects the CPU time
that it takes for one tuple to be processed by the subquery, and selectivity rep-
resents the ratio of the number of output tuples to the number of input tuples.
Both inputs arrive at the rate of 1 tuple per second. Potentially each node can
reduce load at its inputs by dropping tuples to avoid overload. Let’s consider
node A. Table 1 shows various ways that A can reduce its input rates and the
consequences of this in terms of the load at both A and B, as well as the through-
put observed at the query outputs (Note that we are assuming a fair scheduler
that allocates CPU cycles among the subqueries in a round-robin fashion). In all
of these plans, A can reduce its load to the capacity limit. However, the effect
of each plan on B can be very different. In plan 1, B stays at the same overload
level. In plan 2, B’s load increases to more than twice its original load. In plan
3, B’s overload problem is also resolved, but throughput is low. There is a better
plan which removes overload from both A and B, while delivering the highest
total throughput (plan 4). However, node A can only implement this plan if it
knows about the load constraints of B. From A’s point of view, the best local

1 In this work, we focus on total query throughput as the quality metric to maximize.

76 N. Tatbul et al.

Table 1. Alternate load shedding plans for node A of Figure 6

Plan Reduced rates at A A.load A.throughput B.load B.throughput Result

0 1, 1 3 1/3, 1/3 4/3 1/4, 1/4 originally, both nodes
are overloaded

1 1/3, 1/3 1 1/3, 1/3 4/3 1/4, 1/4 B is still overloaded

2 1, 0 1 1, 0 3 1/3, 0 optimal plan for A,
but increases B.load

3 0, 1/2 1 0, 1/2 1/2 0, 1/2
both nodes ok,
but not optimal

4 1/5, 2/5 1 1/5, 2/5 1 1/5, 2/5 optimal

plan is plan 2. This simple example clearly shows that nodes must coordinate in
their load shedding decisions to be able to achieve high-quality query results.

We model the distributed load shedding problem as a linear optimization
problem. In our formulation, each server node is represented with a linear load
constraint, written in terms of operator costs, selectivities, and input rates. The
objective function to maximize is the total output rate at the query end-points,
written in terms of operator selectivities and input rates. The drop selectivities
(i.e., the fraction of tuples to be kept at the designated drop arcs) appear as the
variables in both of these formulas. The goal is to solve the linear program to as-
sign the optimal values to these variables that would satisfy the load constraints
on all servers while maximizing the total throughput objective [17].

Our solution to the distributed load shedding problem consists of four steps:
(i) advanced planning, (ii) load monitoring, (iii) plan selection, and (iv) plan
implementation. In the first step, we precompute a series of load shedding plans
for various input rate combinations, each corresponding to an overload condition.
The idea is to prepare the system against any potential overload scenario by
doing most of the computational work in advance. Next we start periodically
measuring the system load. If an overload is detected in one or more of the
servers, we select a plan from the previously computed ones and modify the
query network according to this plan.

We architect our solution in two alternative ways:

• Centralized Approach. In the centralized solution, all load shedding steps
are performed at one central server (designated as the “coordinator node”)
except the plan implementation step. The coordinator contacts all the other
servers in order to collect information on their query network topology and
run-time statistics (e.g., operator costs and selectivities). Based on the col-
lected global metadata, the coordinator generates a series of load shedding
plans for other servers to apply under certain overload conditions. Here, we
use the GNU Linear Programming Toolkit (GLPK) 2 to generate the plans.
These plans are then uploaded onto the associated servers together with their
plan-id’s. Then the coordinator starts monitoring the input load. If an over-
load situation is detected, the coordinator selects the best plan to apply and
sends the corresponding plan-id to the other servers in order to trigger the
distributed implementation of the selected plan.

2 http://www.gnu.org/software/glpk/glpk.html

Load Management and High Availability 77

• Distributed Approach. In the distributed solution, all four load shedding
steps are performed at all of the participating nodes in a cooperative fashion.
The collective actions of all the servers result in a globally effective load shed-
ding plan. The neighboring servers coordinate through metadata aggregation
and propagation. As a result of this communication, each node identifies what
makes a feasible input load for itself and its server subtree, and represents
this information in a table that we call the Feasible Input Table (FIT). FIT
is then propagated to the upstream parent. The parent aggregates the FITs
from all of its children, eliminating the table entries that are infeasible for
itself. Finally, the parent propagates the resulting FIT to its own parents.
This propagation continues until the input nodes receive the FIT for all their
downstream nodes. Then using its FIT, a node can shed load for itself and
for its descendant nodes.

In the rest of this section, we describe how we perform the advance planning
step for the above alternative approaches.

4.1 Solver-Based Advance Planning

Our goal in the advance planning step of the centralized, solver-based approach
is to produce load shedding plans for a set of infeasible input rate combinations,
which will make them feasible for all the servers in the system. The number
of such combinations to consider could be potentially very large, and it would
be too costly to call the LP solver for each such combination. Instead we use
the following, more efficient strategy: We consider a multi-dimensional space of
input rates. We systematically search this space to pick a subset of the possible
points for which we will call the solver. For the rest of the points, we approx-
imately reuse the solver-generated plans. To be more specific, we assume that
an error threshold in quality, ε is defined. Given any infeasible point s that
lies between two other infeasible points r and q (i.e., r < s < q) for which
we have already computed the optimal load shedding plan using the solver, if
(q.quality − r.quality) ≤ ε ∗ q.quality, then s can use the plan for r with a mi-
nor modification. For example, consider the two-dimensional example in Figure
7(a), each dimension representing an input stream. Assume that s = (60, 75)
lies within ε-distance from r = (50, 50) and q = (100, 100). Then s can use the
plan at r, with the additional modification that input1 and input2 must be re-
duced by an additional factor of 50

60 and 50
75 , respectively. Based on this idea, we

take the input rate space and divide it in a region quadtree-like fashion. For
each region, the solver is called for the top-most and the bottom-most points.
We stop dividing a region either when all points in that region turn out to be
within the ε bound, or the top-most point is in fact a feasible point. The result
of this process is a collection of input rate subspaces with a load shedding plan
assigned to each subspace. These subspaces can be very conveniently placed into
a quadtree-based index during the space division process described above. For
example, Figure 7(b) shows the index that corresponds to the space division of
Figure 7(a). At run time, we will use this index to locate the region into which an

78 N. Tatbul et al.

r = (50, 50)

s = (60, 75)

p = (0, 0)

EC

G D

F H

K

J

M

L

q = (100, 100)

(a) Space division for Solver

B

J K L M

F G H

C D E

A

I

(b) Space index for
Solver

Fig. 7. Quadtree-based space division and index for Solver

observed infeasible rate point falls and will use the corresponding load shedding
plan.

4.2 FIT-Based Advance Planning

Our goal in the advance planning step of the distributed 3, FIT-based approach
is to represent a set of feasible input rate combinations (for each server and its
subtree) with a table. To briefly summarize, given a node with m inputs, the FIT
for this node is a table with m + 2 columns. The first m columns represent the
rates for the m inputs; the (m+1)th column represents the complementary local
load shedding plan that must be used together with that input entry (this plan
may be needed to handle query sharing [17]); and the last column represents the
resulting output quality score. Again, for efficiency, we do not want to consider
all possible rate combinations. Instead, we use the ε threshold as follows: From
each input dimension, we pick FIT points that are at most some distance apart,
we call this distance “spread” for that dimension. If input dimension i has a
maximum feasible rate mi, then the spread for that dimension can be computed
as ε ∗ mi. Next, we must map potential infeasible points to our feasible points
in FIT. This means that, if we observe a certain infeasible point q, then we
will reduce it to a feasible point p using proper drop values. In general, an
infeasible point q that is greater than a feasible point p on all dimensions can be
mapped to p. However, we would like to use the best mapping. Our algorithm
divides the input rate space accordingly to make sure that this assignment is
done to guarantee the highest quality for all infeasible points. The resulting set
of subspaces are again placed in a quadtree-based data structure to facilitate
3 Although FIT is a distributed algorithm by design, its centralized implementation
is also available [17].

Load Management and High Availability 79

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
C−FIT

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

(a) Solver and C-FIT

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
Solver−W

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

(b) Solver and Solver-W

Fig. 8. Plan generation performance for different query networks

search at run-time. Further details about how FIT points are generated and
how this table is propagated between neighboring nodes are described in our
earlier work [17], [18].

In Figure 8, we show a basic experimental result that compares the load shed-
ding plan generation time for our alternative approaches on five different query
networks. These networks differ in the way they apportion the query load across
different query paths. In Figure 8(a), we are showing that centralized implementa-
tion of FIT outperforms Solver and it is also less sensitive to query load imbalance.
The performance difference is mainly due to the time Solver spends in searching
the space of infeasible points, while FIT only deals with the feasible points. In
Figure 8(b), we compare Solver with its variation Solver-W. Solver-W essentially
takes workload knowledge into account and tries to meet a given expected error
threshold for the average case. In other words, some infeasible points are known
to be less likely than others. Errors of such points contribute less to the average
error. Therefore, the algorithm spends less time exploring the corresponding sub-
spaces. The result is some improvement in plan generation performance. Further
experimental results can be found in our previous work [17].

5 High-Availability in Borealis

In a distributed stream processing system, servers may fail and this can signif-
icantly disrupt or even halt overall stream processing. In case of failures, large
amount of transient information may be lost and the servers downstream from
a failed one may stop making any progress. Therefore, a distributed stream
processing system must provide high-availability (HA) mechanisms that allows
processing to continue in spite of server failures. These mechanisms must take
correctness (e.g., data loss, duplicates) and performance (e.g., latency introduced
during regular processing and during recovery time) requirements of the appli-
cations into account.

80 N. Tatbul et al.

5.1 Basic HA Models

In Borealis, we define three types of recovery guarantees to address different HA
requirements:

• Precise Recovery. Post-failure output is exactly the same as the output
without failure. Many financial services applications have such strict correct-
ness requirements.

• Rollback Recovery. The output produced after a failure is “equivalent”
to that of an execution without failure, but not necessarily to the output
of the failed execution. The output may also contain duplicate tuples. Thus,
information loss is avoided, but the output can still be imprecise. Event
detection applications such as fire alarms, theft prevention are examples.

• Gap Recovery. This is the weakest form of recovery where data loss is ac-
ceptable for better performance. Sensor-based environment monitoring where
recent data is more important is an example.

Each primary server has an associated backup server. A backup server runs
its own stream processing engine and has the same query network fragment as
its primary, but its state is not necessarily the same as that of the primary. If a
primary server fails, its backup server immediately detects the failure and takes
over the operation of the failed server.

Borealis provides four recovery approaches that can provide one or more of the
above recovery guarantees. These approaches mainly differ in how primary and
backup servers prepare for failures. Each approach uses a different combination
of redundant processing, checkpointing, and remote logging. As a result, they
offer different tradeoffs between run-time overhead and recovery performance.

• Amnesia. This approach does not involve any preparation for failures. As
soon as the backup server detects that the primary has failed, it restarts the
failed query network from an empty state.

• Passive Standby. Each primary server periodically checkpoints (i.e., reflects
its state updates) to its backup server. The backup server takes over from
the latest checkpoint when the primary fails.

• Active Standby. The backup server processes all tuples in parallel with its
primary. The output tuples of the backup server are not sent downstream;
instead they are logged at the output queues. If the primary fails, the backup
takes over by sending the logged tuples to all downstream neighbors and then
continuing its processing.

• Upstream Backup. Upstream servers preserve tuples in their output queues
while their downstream neighbors are still processing them. If a server fails,
an empty backup server rebuilds the latest state of the failed primary from
the logs kept at the upstream server.

The amnesia approach can only provide gap recovery guarantee, while the
other approaches provide rollback recovery in their simplest forms and can
be extended to provide precise recovery. In principle, the guarantee of precise

Load Management and High Availability 81

recovery requires a higher run-time cost than other weaker recovery guarantees.
Furthermore, the query operators may also affect recovery semantics and asso-
ciated cost requirements. Some Borealis operators are deterministic (i.e., they
produce the same output stream every time they start from the same initial
state and receive the same input tuples), while others are arbitrary due to de-
pendence on time or arrival order. Thus, deterministic ones are less costly to
provide better guarantees [19].

An in-depth algorithmic analysis of all of the above basic HA alternatives to-
gether with results from our experimental study showed that each HA approach
poses a clear tradeoff between recovery time and processing overhead [19]. In
fact, each approach covers a complementary portion of the solution space. To
summarize:

• Active standby has high run-time overhead, but provides very fast recovery.
• Passive standby performs worse than active standby both in terms of recovery

time and run-time overhead. However, it is the only approach that easily
provides precise recovery for arbitrary query networks. Additionally, it can
flexibly trade off between run-time overhead and recovery speed by adjusting
the checkpoint interval.

• Upstream backup provides precise recovery for most query networks with the
lowest run-time overhead, but at the cost of a longer recovery, depending on
the amount of logged data to process during recovery.

5.2 Cooperative and Self-configuring HA for Server Clusters

A server cluster is a popular form of shared-nothing computing architecture
where commodity servers are connected by fast local area networks. Borealis may
distribute its processing load onto such a cluster for better scalability. For such
environments, we designed and implemented a self-configuring HA approach that
enables fast recovery as well as minimal slow-down for regular processing. Unlike
our basic HA mechanism described in Section 5.1 where each server is assigned
one other backup server, in this case, each server is backed up by multiple servers
in a cooperative fashion. Each of these backup servers are in charge of a disjoint
query network fragment (called an “HA unit”) of the primary server. Thus, they
can take over the failed execution in parallel, which speeds up the recovery time
of rebuilding the latest state of the failed server. Furthermore, HA tasks are
performed when servers are idle, which reduces the interference with regular
stream processing.

In this work, we focused on checkpoint-based passive standby as the recovery
approach. This choice is mainly due to the fact that checkpointing works for a
larger set of workload and usage scenarios than the other alternatives. Below
we briefly summarize the important features of this approach; more technical
details can be found in our previous work [20].

• The HA Mechanism. Query network on each server is partitioned into HA
units. Each such unit is assigned to a different backup server. The preparation

82 N. Tatbul et al.

for failures involves two HA tasks, namely capture and paste, to be performed
during idle periods. Capture is performed by the primary server, while paste
is performed by the backup server. In capture, the primary selects one of its
HA units, prepares a checkpoint message for it that includes all the state
changes since the last checkpoint, and sends this message to the associated
backup server. In paste, the backup selects one of the checkpoint messages
that it has received from a primary, copies the message to the corresponding
backup image, and notifies the sender primary that the checkpointing request
has been completed. Each server is periodically pinged by another designated
server. If a failure is detected, then this is broadcast to other servers in the
cluster. Each of these notified servers immediately pastes any checkpoint
messages from the failed server to the corresponding backup images. Then
the execution of these backup images start while the necessary input and
output streams are redirected so that stream processing can continue at the
backup servers. This HA mechanism provides precise recovery because each
backup image can obtain the tuples that the primary has processed since
the last checkpoint. This is achieved by keeping output queues at the output
of each HA unit to retain those tuples that the downstream backups are
currently missing. These output queues are pruned when the downstream
server processes them and checkpoints the effect onto the backup server.

• Checkpoint Scheduling. A server can be a primary for some HA units and
can be a backup for others. Therefore, when it is idle, it can perform either a
capture task, or a paste task. The recovery time can be significantly reduced
by a careful scheduling of these HA tasks. We developed an algorithm called
the “Min-Max Checkpoint Scheduling Algorithm”. The idea is to schedule
the HA task that would minimize the maximum recovery load among the
ones that are in the task queue. This algorithm first finds the best capture
task, i.e., the capture of the HA unit with high processing load and low
checkpointing cost. Similarly, it finds the best paste task that would help the
HA unit with the largest recovery load. Finally, it performs the best task
found.

• Dynamic Backup Assignment. Assignment of HA units to backup servers
can also affect the recovery time. For example, a server which is assigned
too many HA units for backup may become a bottleneck. Furthermore, an
existing backup assignment may need to be changed with varying system
conditions (e.g., changing input rates). Therefore, our approach periodically
runs a “Backup Reassignment Algorithm”. This algorithm detects the worst
point of failure (i.e., the server whose failure would cause the longest recov-
ery), and balances its backup load with another server whose failure would
cause the shortest recovery.

• Delta Checkpointing. HA tasks can be performed more efficiently us-
ing operator-specific delta-checkpointing techniques. This is important for
stateful operators such as aggregate and join. We use dirty bits for aggre-
gate groups and windows to mark whether they were created after the last
checkpoint or not. Dirty windows are fully captured/pasted while others are

Load Management and High Availability 83

0 50 100 150
0

1

2

3

4

5

6

7

8

time (sec)

re
co

ve
ry

 ti
m

e
(s

ec
)

active standby
whole checkpointing (passive standby)
round robin
min max

(a) Recovery time

0 50 100 150
0

0.5

1

1.5

2

2.5

3

time (sec)

la
te

nc
y

(s
ec

)

no HA / active standby
whole checkpointing (passive standby)
mim max/ round robin

(b) End-to-end latency

Fig. 9. Performance of min-max checkpoint scheduling

partially captured/pasted. For join, only the tuples that entered the window
after the last checkpoint are captured.

We performed various experiments on the Borealis prototype in order to eval-
uate the performance of the above techniques [20]. Figure 9 is a basic result that
shows how our min-max checkpoint scheduling algorithm effectively reduces the
recovery time while being minimally intrusive to regular query processing. In
this experiment, 16 aggregates were deployed on each of 5 identical servers,
and input stream rates were increased at time point 150 seconds, when each
server became around 90% utilized for query processing. Figure 9(a) shows that
min-max algorithm provides the fastest recovery even after the system load is
increased. Figure 9(b) shows how HA tasks affect query processing performance.
Our finer-grained checkpoint technique disrupts processing much less than the
standard whole checkpointing approach.

6 Conclusions and Future Work

This paper provides an overview of the Borealis system and three of its features
that are key for its scalable and reliable distributed operation. With our resilient
operator distribution algorithm, Borealis can withstand high degrees of load
without the need for any operator migration. Beyond that, our correlation-based
operator distribution algorithm can dynamically balance server loads by taking
the relationship between load variations of operators and nodes into account.
Our work on distributed load shedding has focused on the load dependency
between different servers, and has proposed two alternative solution architectures
for removing CPU overload, where scalable coordination between neighboring
servers can be achieved in a centralized or a distributed way. Finally, our work
on high availability has explored various recovery guarantees and models that
may be demanded by different applications, and has shown the existing tradeoffs
between performance and correctness. This work has further explored efficient
checkpoint-based recovery techniques for server clusters based on cooperation

84 N. Tatbul et al.

among multiple servers and automatic self-configuration with changing load. All
of these algorithms have been implemented and experimentally evaluated on our
system prototype. The latest Borealis prototype code can be downloaded from
http://www.cs.brown.edu/research/borealis/.

We are currently working on a replication-based stream processing scheme
that will provide Borealis with faster and more reliable operation over wide-area
networks [21]. Other future work items include support for richer data types
(such as video streams) in the form of multi-dimensional arrays, and seamless
integration of stream processing with large-scale data collection and dissemina-
tion.

Acknowledgements. We thank all members of the Borealis project for their
support. This research has been sponsored by the NSF under the grants IIS-
0086057 and IIS-0325838.

References

1. Whitney, A.T., Shasha, D.: Lots o’ Ticks: Real-Time High Performance Time Series
Queries on Billions of Trades and Quotes (Demo). In: ACM SIGMOD Conference,
Santa Barbara, CA (2001)

2. Babu, S., Subramanian, L., Widom, J.: A Data Stream Management System for
Network Traffic Management. In: ACM Workshop on Network-Related Data Man-
agement (NRDM), Santa Barbara, CA (2001)

3. Stefanidis, A., Nittel, S. (eds.): Geosensor Networks. CRC Press, Boca Raton
(2004)

4. Leonhardt, U., Magee, J.: Multi-sensor Location Tracking. In: International Con-
ference on Mobile Computing and Networking (MobiCom), Dallas, TX (1998)

5. Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E.,
Cooper, O., Edakkunni, A., Hong, W.: Design Considerations for High Fan-In
Systems: The HiFi Approach. In: CIDR Conference, Asilomar, CA (2005)

6. Shah, M.A., Hellerstein, J.M., Brewer, E.: Highly-Available, Fault-Tolerant, Par-
allel Dataflows. In: ACM SIGMOD Conference, Paris, France (2004)

7. Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.,
Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik,
S.: The Design of the Borealis Stream Processing Engine. In: CIDR Conference,
Asilomar, CA (2005)

8. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer,
M.: Network-Aware Operator Placement for Stream-Processing Systems. In: IEEE
ICDE Conference, Atlanta, GA (2006)

9. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive Control of
Extreme-scale Stream Processing Systems. In: IEEE ICDCS Conference, Lisboa,
Portugal (2006)

10. Zdonik, S., Stonebraker, M., Cherniack, M., Çetintemel, U., Balazinska, M., Bal-
akrishnan, H.: The Aurora and Medusa Projects. IEEE Data Engineering Bulletin
(Special Issue on Data Stream Processing) 26 (2003)

11. Abadi, D., Lindner, W., Madden, S., Schuler, J.: An Integration Framework for
Sensor Networks and Data Stream Management Systems (Demo). In: VLDB Con-
ference, Toronto, Canada (2004)

Load Management and High Availability 85

12. Ahmad, Y., Berg, B., Çetintemel, U., Humphrey, M., Hwang, J., Jhingran, A.,
Maskey, A., Papaemmanouil, O., Rasin, A., Tatbul, N., Xing, W., Xing, Y., Zdonik,
S.: Distributed Operation in the Borealis Stream Processing Engine (Demo). In:
ACM SIGMOD Conference, Baltimore, MD (2005)

13. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for
Data Stream Management. VLDB Journal 12 (2003)

14. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic Load Distribution in the Borealis
Stream Processor. In: IEEE ICDE Conference, Tokyo, Japan (2005)

15. Xing, Y., Hwang, J.H., Çetintemel, U., Zdonik, S.: Providing Resiliency to Load
Variations in Distributed Stream Processing. In: VLDB Conference, Seoul, Korea
(2006)

16. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker, M.: Load Shed-
ding in a Data Stream Manager. In: VLDB Conference, Berlin, Germany (2003)

17. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying FIT: Scalable Load Shedding Tech-
niques for Distributed Stream Processing. Technical Report CS-06-13, Brown Uni-
versity, Computer Science (2006)

18. Tatbul, N., Zdonik, S.: Dealing with Overload in Distributed Stream Process-
ing Systems. In: IEEE International Workshop on Networking Meets Databases
(NetDB), Atlanta, GA (2006)

19. Hwang, J.H., Balazinska, M., Rasin, A., Çetintemel, U., Stonebraker, M., Zdonik,
S.: High-Availability Algorithms for Distributed Stream Processing. In: IEEE
ICDE Conference, Tokyo, Japan (2005)

20. Hwang, J.H., Xing, Y., Çetintemel, U., Zdonik, S.: A Cooperative, Self-Configuring
High-Availability Solution for Stream Processing. In: IEEE ICDE Conference, Is-
tanbul, Turkey (2007)

21. Hwang, J.H., Çetintemel, U., Zdonik, S.: Fast and Reliable Stream Processing
over Wide Area Networks. In: IEEE International Workshop on Scalable Stream
Processing Systems (SSPS), Istanbul, Turkey (2007)

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 86–108, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Knowledge Aquisition and Data Storage in Mobile
GeoSensor Networks

Peggy Agouris1, Dimitrios Gunopulos2, Vana Kalogeraki2, and Anthony Stefanidis1

1 Department of Geography and Geoinformation Sciences
George Mason University

Fairfax, VA 22030
{pagouris,astefani}@gmu.edu

2 Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92521
{dg,vana}@cs.ucr.edu

Abstract. In this paper we address the issue of mobility in geosensor networks,
inspired by the computational challenges imposed by modern surveillance ap-
plications. More specifically we consider networks of optical sensors (video and
still cameras), and present a spatiotemporal framework for the management of
information captured in them. In this context, mobility is addressed at two lev-
els, considering mobile objects in the area monitored by a network, and mobile
sensors observing such objects. Our interest lies on the data acquisition and
storage problems that arise in this setting. We identify certain key issues behind
the development of a general framework for knowledge acquisition and data
storage in geosensor networks, namely: spatiotemporal object modeling;
similarity metrics to compare spatiotemporal objects; storing and indexing spa-
tiotemporal objects in a geosensor network; and network management using
spatiotemporal techniques. We present some emerging approaches that address
these key issues and thus outline a general framework for information and sen-
sor management in mobile sensor networks.

Keywords: Mobility, surveillance, modeling, spatiotemporal similarity, indexing.

1 Introduction

Geosensor networks are emerging as a novel paradigm for geospatial information
collection and management. A geosensor network can be loosely defined as a sensor
network that monitors phenomena in geographic space, and in which the geospatial
content of the information collected, aggregated, analyzed, and monitored is of prime
importance [Nittel & Stefanidis, 2004]. For example, cameras and GPS sensors on-
board static or mobile platforms have the ability to provide continuous streams of
geospatially-rich information. The geographic space covered by a network, and ana-
lyzed through its measurements, may range in scale from the confined environment of
a room [Chen et al., 2002] or a workplace environment [Conner et al., 2005] to the
highly complex dynamics of an ecosystem region [Ailamaki et al., 2003; Juang et al.,
2002; Mainwaring et al., 2002].

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 87

In this paper we address the issue of mobility in geosensor networks, inspired by
the computational challenges imposed by modern surveillance applications. More
specifically we consider networks of optical sensors (video and still cameras), and
present a spatiotemporal framework for the management of information captured in
them. In this context, mobility is addressed at two levels, considering mobile objects
in the area monitored by a network, and mobile sensors observing such objects. We
do not focus on individual sensor data processing techniques; we assume instead that
different sensors provide their readings to the system in the form of a stream (of val-
ues or events) and we focus instead on the storage and management of such data in a
network of many sensors. Our interest lies on the data acquisition and storage prob-
lems that arise in this setting. We identify certain key issues behind the development
of a general framework for knowledge acquisition and data storage in geosensor
networks with mobility in both the sensor and the tracked object level. They are: spa-
tiotemporal object modeling; similarity metrics to compare spatiotemporal objects;
storing and indexing spatiotemporal objects in a geosensor network; and network
management using spatiotemporal techniques. In this position paper we present some
emerging approaches that address these key issues and thus outline a general frame-
work for information and sensor management in mobile sensor networks.

Even though our motivation stems from video tracking applications, the problems
we address are in principle applicable to a wide array of spatiotemporal datasets (e.g.
to process information collected using GPS-enabled cell phones, or even RFID tags).
The paper is organized as follows. In Chapter 2 we present an overview of relevant
literature, followed in Chapter 3 by our approach to model spatiotemporal information
in helixes. Chapter 4 presents spatiotemporal similarity assessment techniques to sup-
port the comparison of spatiotemporal activities, followed by appropriate indexing
techniques as they are presented in Chapter 5. Chapter 6 discusses the issue of distrib-
uted storage of spatiotemporal information and in-network analysis for real-time
tracking. We conclude with closing remarks in Chapter 7.

2 Related Work

The use of video sensors, tracking devices, and sensor networks is revolutionizing
geospatial information collection and analysis, by supporting the capturing of spatio-
temporal movement and complex activities. Furthermore, the emergence of sensor
networks has introduced some interesting new challenges and approaches to the man-
agement of rapidly evolving distributed information. Object tracking in geospatial
applications has been greatly assisted over the past few years mainly by advance-
ments in two complementary fields:

 technological advancements in global positioning system (GPS) and relevant
tracking technology (e.g. Radio Frequency Identification –RFID- systems) have
resulted in the development of economical and easily deployable devices to di-
rectly collect positional information over time (coordinates of points in a geo-
referenced coordinate system, see e.g. [Nascimento et al., 2003]), while

 theoretical advancements in image analysis have resulted in efficient algorithms
to track objects as they are captured in motion imagery datasets (i.e. video feeds
or sequences of static images).

88 P. Agouris et al.

Early efforts addressed traffic monitoring using stationary cameras [Beymer et al.,
1997]. The extension of computer vision solutions multi-view surveillance using mo-
tion imagery in large and complex environments was a natural progression [Collins et
al., 2001]. Representative efforts were the ones performed in the context of DARPA’s
VIVID program to model basic patterns of activity [Stauffer & Grimson, 2000] and
develop hierarchical video event ontologies [Bolles & Nevatia, 2004].

Addressing multi-camera systems, in the context of computer vision applications,
the main challenge is the linking of information across feeds. Towards this goal, we
have efforts that proceed using a single [Altenis & Jensen, 2002] or limited number of
attributes [Eltoukhy & Salama, 2001], and efforts concentrating on overlapping views
[Javed et al., 2000]. Of particular interest is the development of correspondence mod-
els for overlapping camera networks [Stauffer & Tieu, 2003] or non-overlapping net-
works in which the movement is constrained to nearly linear patterns [Javed et al.,
2000]. An interesting approach based on Hidden Markov descriptions of positions and
traffic flow for object linking across various static sensors was presented in [Jaynes,
2004]. [Chang et al., 2000] use epipolar geometry to constrain correspondences across
camera views, and use a Bayes net to combine features (e.g., color, height) for corre-
spondence assessment, similar to [Dockstader & Tekalp 2001].

Addressing the labeling and comparison of trajectories, we have the development
of distance metrics to compare trajectories of equal duration [Makris & Ellis, 2002;
Jaynes et al., 2002], the introduction of spatial and temporal shifts in this comparison
[Needham & Boyle, 2003], and the use of distance metrics that are based on model-
based trajectory representations to compare trajectories of varying resolutions
[Porikli, 2004]. Activity detection in the presence of noise using optical and infrared
cameras, and the classification of activities in rather constrained environments has
also been addressed in specific applications, and typically under highly constrained
conditions (e.g. monitoring vessels as they enter ports [Rhodes et al., 2005]), or work
on object tracking through enter/exit zones.

Addressing target tracking in sensor networks, centralized approaches for
predicting a moving object's location have been proposed in the literature. In [Aslam
et al, 2003] a binary model for tracking a moving object is used, in which sensors
employ a single bit of information (that indicates whether the object is approaching
or moving away from a sensor) and broadcast this bit to a base station that can
accurately estimate the object's trajectory. The need to find ways to balance energy
consumption and accurate object prediction has been recently addressed. Approaches
have been proposed for clustering the sensors into groups to minimize the network's
energy consumption [Bandyopadhyay & Coyle, 2003] and to efficiently disseminate
data taking into consideration account sink mobility [Ye et al, 2002]. In these, the
target's location can be predicted based on known previous locations [Yand & Sikdar,
2003], or through the collaboration of multiple nodes surrounding the target to
increase accuracy and fault tolerance [Cerpa et al, 2001]. To save network resources,
[Brooks et al, 2003] use a collaborative signal processing (CSP) approach based on
location-aware data routing that limits the scope of CSP to the relevant subset of
nodes only. In [Zhang & Gao, 2004] the Dynamic Convoy Tree-based Collaboration
(DCTC) framework builds a tree structure called convoy tree, with sensor nodes
around the moving target. As the target moves, the tree dynamically evolves by
adding new nodes and pruning others. In this case, many nodes in the convoy tree

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 89

may become far away from the root of the tree. As a result, a new root is elected to
replace the old root, and the tree is reconfigured accordingly.

A new class of spatiotemporal multicast protocols have been recently developed
[Huang et al, 2003(a); Huang et al, 2003(b)] that take into account spatio-temporal
constraints to provide reliable and just-in-time delivery. In [Liu et al, 2003], geo-
graphically local collaborative groups are formed and the tradeoff between performance
and scalability for target localization is discussed. In [Abdelzaher et al, 2004], object-
oriented programming mechanisms have been proposed for implementing tracking
applications. The focus is on hiding from the application developer the issues of object
communication, object mobility and the maintenance of the tracking objects and their
states.

Work relevant to sensor information management, querying, and integration has
been performed in data streams, with notable projects like Stanford’s STREAM
[Motwani 2003], Berkeley’s Telegraph [Madden et al. 2002], MIT/Brown’s Aurora
[Carney et al. 2002], and Cornell’s Cougar [Faradjian et al. 2002]. The STREAM
project made significant contributions to formalizing general data streams. Telegraph,
Aurora, and Cougar have focused on disseminating queries and collecting query
results over sensor networks which consists of sets of energy-constrained, small-form
sensor platforms. This work also includes approximate queries on data streams using
statistical sampling techniques [Gehrke et al. 2001]. UCLA’s Smart Kindergarten
Project [Srivastava 2001] uses sensors like video cameras, microphones and others;
data collected in a playroom setting and combined with data from embedded sensors
in ‘smart toys’. Here, data streams are annotated with context information to provide
for improved analysis capabilities of the video data.

3 Modeling Spatiotemporal Trajectories in ST Helixes

The spatiotemporal evolution of an object comprises two types of activities: movement
and deformation. As the object moves, it changes its location with respect to an exter-
nal reference frame. This information can be represented as a trajectory describing the
movement of the object’s center of mass. The second type of spatiotemporal change is
deformation. It describes the variations of the object’s shape with respect to an internal
reference frame. In order to describe both of these types of change we have developed
the model of the spatiotemporal helix [Agouris & Stefanidis, 2003; Stefanidis et al.,
2003]. A visualization of a helix is shown in Fig. 1, using the 3-dimensional (x,y,t)
spatiotemporal domain of a scene, comprising two (x, y) spatial dimensions represent-
ing the horizontal plane, and one (t) temporal dimension. The spatiotemporal helix
comprises a central spine and annotated prongs. More specifically:

 the central spine models the spatiotemporal trajectory described by the object’s
center as it moves during a time interval, while

 the protruding prongs express deformation (expansion or collapse) of the object’s
outline at a specific time instance.

As a spatiotemporal trajectory, a spine is a sequence of (x,y,t) coordinates. It can
be expressed in a concise manner as a sequence of spatiotemporal nodes S(n1,…nn).
These nodes correspond to breakpoints along this trajectory, namely points where the

90 P. Agouris et al.

object accelerated/decelerated and/or changed its orientation. Accordingly, each node
ni is modeled as ni(x,y,t,q), where:

 (x,y,t) are the spatiotemporal coordinates of the node, and
 q is a qualifier classifying the node as an acceleration (qa), deceleration (qd), or

rotation (qr) node.

Similarly, each prong is a model of the local expansion or collapse of the outline at
the specific temporal instance when this event is detected, and is a horizontal arrow
pointing away from (expansion) or towards (collapse) the spine. It is modeled as
pi(t,r,a1,a2) where:

 t is the corresponding temporal instance (intersection of the prong and the spine in
Fig. 1),

 r is the magnitude of this outline modification, expressed as a percentage of the
local diameter,

 a1, a2 is the range of azimuths where this modification occurs; with each azimuth
measured as a left-handle angle from the North (y) axis.

x

y

Fig. 1. The spatiotemporal helix model (left) and actual helixes generated for the video feed of
fig. 2 (zoomed area of actual helix graph)

While Fig. 1 is a schematic diagram of the helix, its database representation is a
sequence of n node and m prong records:

Helix objid t1,t2 = (node1,…noden; prong1,..prongm)

Where node and prong records are as described above, objid is the identifier of the
corresponding object and t1, t2 are the start and end instances of the time interval to
which the helix refers.

This is visualized in Fig. 2 where we see a frame from a video feed captured by a
sensor on top of a building observing a road segment with cars driving by, and pedes-
trians walking on the walkway. In the middle of Fig. 2 we see delineated car

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 91

Fig. 2. A video frame (left), delineated trajectories (middle), and tracked objects (right)

trajectories. The 3-D space of Fig. 2(middle) is spatiotemporal, defined similarly to
the convention used in Fig. 1. In this 3D space, car movements correspond to
continuous spatiotemporal trajectories like the ones shown in Fig. 2(middle). While
for this particular feed car trajectories are rather smooth, they can become quite
complicated over broader areas, as the observed cars engage in more complex
movements (e.g. accelerating /breaking, turning, stopping). While deformation is
redundant when dealing with single objects, it becomes extremely important when
describing groups of objects, as it communicates the closeness (and its variations) of
members of a group.

Fig. 3. Visualization of helix query results in a GIS layer (left), or as video annotation (right)
(courtesy of Milcord LLC, www.milcord.com)

Thus by tracking objects in video we can generate the corresponding helixes,

which can be stored in any spatial database, which can then support various types of
queries, like location-based queries (e.g, identifying instances when an object entered
a region of interest) or time-based queries (e.g. identifying all objects that were mov-
ing during a specific time interval). The results of such queries can be displayed in a
GIS, or overlapped in the corresponding video frames. Figure 3 shows an example of
such a query from a prototype, with helix nodes (dots) identified in an area of interest
(the light blue GIS layer) over a specific period of time. On the right hand side of the
same figure we can see the result of a query visualized as annotated video.

92 P. Agouris et al.

4 Spatiotemporal Similarity Assessment

Spatiotemporal similarity assessment using helix information allows us to compare
the behavior of the objects to which these helixes correspond. The simplest similarity
measure is any LP-norm function (e.g., the Euclidean distance), and it has been used
for similarity assessment in trajectory/time-series datasets. However most real world
phenomena may evolve at varying rates. Therefore there is a need for similar-
ity/distance measures that allow time warping (i.e. allowing trajectories to
stretch/shrink in the time domain). Two similarity assessment approaches appear most
promising in addressing this goal:

 a higher-dimension extension of Dynamic Time Warping (DTW) [Berndt & Clif-
ford, 1994] for helix comparison. and

 the Longest Common SubSequence (LCSS) approach to the same problem.

The difference between them is that LCSS allows the exclusion of certain sub-
segments from the comparison of two longer segments, thus potentially leading to
more robustness in terms of noise. LCSS is a variation of the edit distance [Leven-
shtein, 1966]. The length of the resulting subsequence can be used as the similarity
measure [Agrawal et al., 1995, Das et al., 1997]. This function can be computed effi-
ciently using dynamic programming. A visualization is offered in Fig. 4, with the
comparison of two sequences.

(a)

(b)

Fig. 4. (a) The Euclidean distance (L2-norm); and (b) The DTW distance

4.1 Dynamic Time Warping

Most real-world phenomena can evolve at varying rates. For that reason – even
though the vast majority of research on trajectory/time-series data mining has focused
on the Euclidean distance – for virtually all real-world systems there is a need for
similarity/distance measures that allow time warping (that is, elastic matching on the
time domain). For example, in molecular biology it is well understood that
functionally related genes will express themselves in similar ways, but possibly at
different rates [Aach, 2001; Bar-Joseph, 2002]. For that reason DTW has been used
extensively.

Let A and B be 2-dimensional trajectories of lengths n and m respectively. Also, let
Head(A)=((ax,1,ay,1),…,(ax,n-1,ay,n-1)) be the first n-1 points of A.

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 93

Definition: The DTW distance between A and B is:

DTW (A,B) = Lp ((ax,n ,ay,n), (bx,m ,by,m)) + min

DTW (Head (A),Head (B))

DTW (Head (A),B)

DTW (A,Head (B))

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

The computation of DTW utilizes a dynamic programming technique. If the possi-
ble allowable matching in time is constrained within at most distance δ (the warping
length) from each point, the computational cost of the algorithm is in the order of
O(δ(n+m)). This function gives a measure of the distance between two trajectories, as
well. Figure 2(b) shows an example of DTW between two 1-dimensional trajectories.

The major drawback of this metric is that its efficiency deteriorates for noisy data.
The algorithm matches individually all the points of a trajectory one by one. Thus, it
also matches the outliers distorting the true distance. Another problem is that it is not
suitable for use with most typical indexing techniques, since it violates the triangular
inequality. Yet one more weakness is that it suffers from excessive computational cost
for large warping lengths. Nevertheless, restricting the allowed warping length sub-
stantially speeds up the computation of DTW and yields other benefits as well (Vla-
chos et al., 2003).

4.2 Longest Common Subsequence

An alternative similarity measure is LCSS, which is a variation of the edit distance
[Levenshtein, 1966]. The basic idea is to match two trajectories by allowing them to
stretch on the time dimension without rearranging the order of the elements but allow-
ing some of them to remain unmatched. The length of the resulting subsequence can
be used as the similarity measure [Agrawal, et al., 1995; Bollobas, 1997; Bozkaya,
1997; Das et al., 1997]. Let A and B be 2-dimensional trajectories of lengths n and m
respectively.

Definition: Given integers δ and ε we define the LCSS distance between A and B as:

The warping length δ controls the flexibility of matching in time and constant ε is
the matching threshold in space. Contrary to the other two distance measures dis-
cussed so far, LCSS gives a measure of the similarity between two trajectories and not
the distance. This function can be computed efficiently by dynamic programming and
has complexity in the order of O(δ(n+m)), if only a matching window δ in time is
allowed [Das et al., 1997].

94 P. Agouris et al.

The value of LCSS is unbounded and depends on the length of the compared tra-
jectories. Thus, it needs to be normalized in order to support trajectories of variable
length. The distance derived from the LCSS similarity can be defined as follows:

Definition: The normalized distance Dδ,ε expressed in terms of the LCSS similarity
between A and B is given by:

Dδ ,ε (A,B) = 1−
LCSSδ ,ε (A,B)

min(n,m)

Even though LCSS presents similar advantages to DTW, it does not share its un-
stable performance in the presence of outliers. Nevertheless, this similarity measure is
non-metric; hence, it cannot be used directly in combination with most typical index-
ing schemes.

4.3 Helix Pose Normalization

Helix comparison proceeds in a hierarchical manner, making progressive use of a
decomposition of helix data. More specifically, spine and prong helix information can
be analyzed to identify extreme events in them and generate a reduced description of
helixes as sequences of these extreme events (E={e1, e2…em}) in the behavior of the
object. These short descriptions can be compared using either LCSS or DTW distance
measures, to immediately eliminate poor candidates and accelerate our similarity
comparison. Candidates that pass this initial test proceed for more detailed compari-
son through the introduction in the description of additional helix information (helix
values that were not included in the first analysis). This process is repeated until all
information is included, or all matching candidates are eliminated. Thus we introduce
the notion of spatiotemporal decomposition into similarity assessment, with the poten-
tial of substantial computational gains.

This comparison scheme can benefit by the introduction of a helix normalization
process, to make similarity assessment invariant to translation, rotation, and scale.
Pose normalization transforms trajectories into a canonical coordinate frame that is
entirely defined in terms of the helix data, thus eliminating the need for local invariant
shape signatures that tend to become unstable in the presence of noise. This requires
applying translation, rotation, and scale in 3D.

Helix pose normalization is closely related to the pose normalization problem in
3D object retrieval, where object similarity is estimated. [Elad et al., 2000] have pro-
posed a normalization scheme that is based on Singular Value Decomposition (SVD)
using second order object moments. Similarly to this approach, [Vranic et al., 2001]
introduced the continuous Principal Component Analysis (cPCA) that ensures transla-
tion, rotation, reflection and scaling invariance. One of the key challenges in pose
normalization is resolving the axis sign ambiguity, which is introduced since the SVD
axis set is determined up to a sign. This requires object flipping, which occurs accord-
ing to a predefined criterion, such as point counting or second order moments. Al-
though several approaches have been developed to resolve the sign ambiguity, they
tend to be inappropriate for spatiotemporal data as they are incapable of incorporating
temporal aspects.

A force field approach works well for pose normalization, bypassing the above is-
sues. It proceeds by estimating the amount of effort required to move a mass m(t) that

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 95

varies in time along the spine of the helix in the presence of a set of fixed masses, M,
along the x, y and z axis (Fig. 5, left). In this configuration a spatiotemporal gravita-
tional force field exists between M and m(t). The notion of time flow as well as the
spatial dimension is therefore represented here by the fact that m(t) changes both its
mass and location with time (Fig. 5, right). In this process helix flopping is controlled
by the physical quantities of the force field (Fg) and the work (W):

F g (t) = G

Mm(t)

r(t)2
W =

F g ,

d s(t)

t = t1

t2
∑

Where ds(t) is the normalized arc length along the helix, t1 and t2 are the first and last
timestamp along the helix, and <.,.> is the dot product.

Fig. 5. Left: Placement of masses M along the x,y,z axes. Right: Example spatiotemporal
force field.

Fig. 6. Left: a set of identical trajectories that were subjected to random translation, rotation,
and scale. Right: the same set of helixes after the normalization process.

Fig. 6 shows some experimental results, whereby a set of identical trajectories was
subjected to random distortions (translation, rotation, scaling) as shown the left. These
distortions were fully recovered using the force field approach. This ability to bypass
such distortions is quite essential when attempting to compare activities that may take
span different spatial and temporal ranges, yet may be inherently similar.

Through similarity assessment we can identify objects that act similarly (e.g. four
vehicles moving in a similar manner, one behind the other), and group them together
in composite objects (a convoy in this case). This composite object will have its own
helix representation: its spine will represent the movement of the center of this

96 P. Agouris et al.

convoy, and prongs will represent instances where the individual objects are grouped
closer together, or move further apart.

5 Indexing Spatiotemporal Objects

If an appropriate similarity/distance measure can be decided based on a specific
application domain, similarity queries can be answered in a straightforward way using
exhaustive search – that is, computing the similarity/distance function between the
query and every trajectory in the database. However, to speed up the computation it is
important to avoid examining trajectories that are very distant to the query. This can
be accomplished by discovering a close match as early as possible during the search,
which can be used as a pruning threshold. A fast pre-filtering step can be employed
that eliminates the majority of distant matches so that the costly, but accurate,
similarity functions are executed only for a small subset of qualifying trajectories
[Keogh, 2002; Yi, 1998].

Various indexing schemes can be used to aid in the pre-filtering step. For example,
the trajectories can be approximated using Minimum Bounding Regions (MBR) and
then stored in a multi-dimensional index structure [Hadjieleftheriou, 2002].
Alternatively, they can be represented as high-dimensional points and then stored in
an index after using any dimensionality reduction technique [Agrawal, 1993].

Query response times can greatly benefit by the use of faster upper/lower-bounding
functions of the actual similarity/distance measures (these are functions that
consistently over/underestimate the true distance). These functions should guarantee
no false dismissals. Intuitively, given an actual distance D of some trajectory from a
query, one should be able to prune other trajectories for which the less-expensive
lower-bounds DLB have already been computed and for which DLB > D. If, in addition,
upper-bounds DUB of the distance functions can be computed, any trajectory for which
DLB is larger than the minimum computed DUB, can also be pruned; its actual distance
from the query is definitely larger than DUB. The inverse is true for similarity
functions like LCSS.

5.1 Lower-Bounding the DTW

Most lower-bounding functions for DTW were originally defined for 1-dimensional
time-series [Kim 2001; Yi et al., 1998]. A more robust lower-bounding technique was
proposed by [Keogh, 2002]. Consider for simplicity a 1-dimensional time-series
A=(ax,1,…,ax,n). We would like to perform a very fast DTW match with warping
length δ between trajectory A and query Q(qx,1,…,qx,n). Suppose that we replicate each
point qx,i for δ time instants before and after time i. The surface that includes all these
points defines the area of possible matching in time, between the trajectory and the
query. Everything outside this area should not be matched. We call the resulting area
around query Q the Minimum Bounding Envelope (MBE) of Q.

The notion of the bounding envelope can be extended for more dimensions; for
example, the MBEδ (Q) for a 2-dimensional query trajectory Q=((qx,1,qy,1),…(qx,n,qy,n))
covers the area between the following trajectories:

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 97

EnvLow ≤ MBEδ (Q) ≤ EnvHigh

where for dimension d at position i:

EnvHighd ,i = max(qd , j), i − j ≤ δ

EnvLowd ,i = min(qd , j), i − j ≤ δ

LB-Keogh works as follows: First, the MBE(Q) of query Q is constructed. Then,
the distance of MBE(Q) from all other trajectories is evaluated. For trajectories Q and
A (assuming dimensionality D), the distance between A and MBE(Q) is:

This function is the squared sum of the Euclidean distance between any part of A

not falling within the envelope of Q and the nearest (orthogonal) edge of the envelope
of Q, as depicted in Figure 7.

One can prove that LB-Keogh lower-bounds the actual time warping distance. A
proof for the 1-dimensional case was given by Keogh (2002). This measure has since
been used extensively in literature [Zhu, 2003; Vlachos et al., 2003]. Recently, in
[Vlachos, 2004] we have shown that we can further improve the quality of the lower
bound by computing a bounding box approximation of the trajectories, and perform-
ing a DTW computation on the approximations (Figure 7).

Fig. 7. A comparison of LB_Keogh (left) and LB_Warp (right)

5.2 Upper-Bounding the DTW

When performing a very fast LCSS match with warping length δ and within space ε
between trajectory A and query Q(qx,1,…,qx,n), the query MBE in this case should be
extended within ε in space, above and below, (Figure 8).

The LCSS similarity between the envelope of Q and a trajectory A is defined as:

98 P. Agouris et al.

This value represents an upper-bound for the similarity of Q and A. We can use the
MBE (Q) to compute a lower-bound on the distance between trajectories as well: for
any two trajectories Q and A the following holds:

Dδ,ε(MBE(Q),A)≤Dδ,ε(Q,A)

 10 20 30 40 50 60 70

40 pts 6 pts

2δ

ε

Q
A

Fig. 8. (Left) Execution of the dynamic programming algorithm for LCSS. The warping length
is indicated by the gray area (δ =6). (Right) The MBE within δ in time and ε in space of a
trajectory. Everything that lies outside this envelope should not be matched.

5.3 Using Upper/Lower-Bounds for Quick Trajectory Pruning

In the two previous subsections we described techniques to upper/lower-bound the
similarity/distance measures between two trajectories. According to the GEMINI
framework [Agrawal et al., 1993], the approximated distance functions can be used to
create an index that guarantees no false dismissals. However, the described up-
per/lower-bounds need to be computed using the raw trajectory data. A recent robust
multi-dimensional indexing scheme for trajectories [Vlachos, 2003] can be used with
any similarity/distance measures discussed so far and that does not need to access the
actual trajectory data but only their compact approximations.

This scheme is based on the following principles. First, the trajectories are approxi-
mated using a large number of multi-dimensional MBRs which are then stored in an R-
tree. For a given query Q, MBE(Q) is computed and decomposed into smaller MBRs.
The resulting query MBRs are probed as range searches in the R-tree to discover which
trajectory approximations intersect with Q and could be potential candidates. Trajectories
that are very distant are never accessed and, thus, they are instantly pruned. Access to the
raw trajectory data is restricted to only a few candidates.

This index is very compact since it stores only the substantially reduced in size
trajectory approximations, and its construction time scales well with the trajectory
length and the dataset cardinality. Therefore, this method can be utilized for massive
data mining tasks. One of the significant advantages of this approach is its generality
and flexibility. The user is given the ability to pose queries of variable warping length
without the need to reconstruct the index. By adjusting the width of the bounding
envelope on the query, the proposed method can support Lp-norm and constrained or
full warping. Also, the user can choose between faster retrieval with approximate
solutions, or exact answers on the expense of prolonged execution time.

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 99

6 Distributed Storage of Spatiotemporal Objects and In-Network
Data Analysis

In this section we describe how we can collect and manage the sensor data in a
distributed manner and how we can configure and reconfigure the sensor network system
so that the capture and tracking of multiple objects can be optimized. Our approach is
based on the integration of the tools for collecting, storing, managing and analyzing
object trajectories with the protocols that manage the tracking of objects in the system.
Efficient distributed indexing techniques for storing information about tracks, objects,
and patterns, in the sensor network, can assist in the automatic classification of new
object tracks. The problem we have to address in this setting is how to store, combine
and analyze such data (a) to achieve real-time classification of new object tracks, while
(b) minimizing the communication costs. For a concrete example, let us consider again
the setting where each node stores a part of the different objects’ trajectories, and we
want to identify the objects that are most similar to a Query trajectory Q. The query
trajectory may be an actual object (in this case we are interested into other similar
objects), or it can be a composite trajectory, designed by the user to incorporate a set of
characteristics, and the user is interested in finding the observed objects that best conform
to these characteristics. To efficiently execute such a query we need both efficient index
structures for storing local data in a node, and sophisticated algorithms for transmitting
only the necessary data over the network. Since we have to consider the entire object if
we want to find how similar it is to the query, we can avoid sending all the data over the
network only if we can use approximation techniques to identify which objects are likely
to be the results of our query.

6.1 The Distributed Most-Similar Trajectory Retrieval Problem

Let G denote a sensor network in a geographical area. Without loss of generality, we
assume that the points in G are logically organized into cells. Each cell contains an
access point (AP) that is assumed to be in communication range from every point in
its cell.

Although the coordinate space is assumed to be partitioned in square cells, other
geometric shapes such as variable size rectangles or Voronoi polygons are similarly
applicable. This partitioning of the coordinate space simply denotes that in our
setting, G is covered by a set of APs. Now let {A1,A2,...,Am} denote a set of m
objects moving in G. At each discrete time instance, object Ai ("i£m) generates a
spatio-temporal record r={Ai,ti,xi,yi}, where ti denotes the timestamp on which the
record was generated, and (xi,yi) the coordinates of Ai at ti. The record r is then
stored locally at the closest AP for l discrete time moments after which it is discarded.
Therefore at any given point every access point AP maintains locally the records of
the last l time moments.

The Distributed Most-Similar Trajectory Retrieval problem is defined as follows:
Given a trajectory Q and a number K, retrieve the K trajectories which are the most
similar to Q.

Example. Assume that some monitoring area G, is segmented into 4 cells, and that
each cell is monitored by an access point (see Figure 9). A trajectory can be

100 P. Agouris et al.

conceptually thought of as a continuous sequence Ai=((ax:1,y:1),...,(ax:l,y:l)) (i£m),
while physically it is spatially fragmented across several cells. Similarly, the spatio-
temporal query is also represented as: Q=((qx:1,y:1),...,(qx:l,y:l)) but this sequence is
not spatially fragmented. The objective is to find the two trajectories that are most
similar to the query Q (i.e. A1 and A2 for Fig. 9).

G

trajectories

A2

A1

x

y

cell

Access Pointmoving object

Fig. 9. Assuming a set of sensors, each storing the partial trajectory of an object, we want to
develop efficient techniques that can store, retrieve, and analyze such data in-situ. The in-situ
requirement allows us to minimize the impact of communication bottlenecks and improve the
performance and the reliability of the system.

C1

: trajectories

A1

A2

access points
x

y time
C1

C2

C3

C4

A1,A2 C1,C2,C3,C4:

a) Map View b) Time View

C2

C3 C4

Fig. 10. Object trajectory representation in the original space (a) and in the local sensor space
(b). For simplicity the time is not shown in (a), while (b) shows the projection of the trajectories
to one dimension only.

The development of efficient techniques for evaluating queries such as the Most-

Similar Trajectory Retrieval allows us to identify and group together similarly acting
objects, manage the members of the group, and offer fault-tolerance guarantees under
the probability of object (e.g. UAV or static sensor) failures or temporary network
disconnections (i.e., short periods in which individual sensors are not able to
communicate with the rest of the network). The sensor network can be configured to

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 101

A2,3,6
A0,4,8

A4,5,10
A7,7,9

A3,8,11
A9,8,9

....

A4,10,18
A2,13,19
A0,15,25
A3,20,27
A9,22,26
A7,30,35

....

c1

QN

c2 c3
c2

QN

c3

c1

2) Hierarchy1) Star

m

Distributed Topologies

A4,4,5
A2,5,6
A0,5,7
A3,5,6

A9,8,10
A7,12,13

....

A4,1,3
A0,6,10
A2,5,7
A9,6,7

A3,7,10
A7,11,13

....

id,lb,ub
C3

id,lb,ub
C2

id,lb,ub
C1

id,lb,ub
METADATA

n

Fig. 11. An example of sensor networks with 3 sensors. Given a query trajectory Q, each sensor
computes bounds on the similarity between the query Q and the parts of the trajectories of the
objects that are locally stored at the sensor. Distributed top-K algorithms can be used then to
find the trajectories that, given the bounds, are the most likely to be the most similar to Q.
These trajectories are then retrieved by the query node, and their similarity to the query is com-
puted exactly.

Fig. 12. Computing the longest common subsequence between a query trajectory Q and a tra-
jectory A1that is stored in two sensors (A11, A12) in a distributed fashion (bottom figure) pro-
duces a lower bound on the actual longest common subsequence of Q and A1 (top figure).

take specific roles or functionalities in managing the object groups. The roles can be
assigned based on varying sensor node properties (such as available resources or
location) or object tracking needs (e.g., similarly acting objects can be tracked by
multiple sensor nodes for fault tolerance).

In the Distributed Top-K Trajectory Retrieval problem, the similarity query Q is
initiated by some querying node QN, which disseminates Q to all the cells that
intersect the query Q [Zeinalipour-Yazti et al., 2006]. We call the intersecting cells
candidate cells. Upon receiving Q, each candidate cell executes locally a lower
bounding matching function (LowerM) and an upper bounding function (UpperM) on
all its local subsequences. This yields 2m local distance computations to Q by each
cell (one for each bound). The conceptual array of lower (LB) and upper bounds (UB)

102 P. Agouris et al.

for an example scenario of three nodes (C1,C2,C3) is illustrated in Figure 11. We will
refer to the sum of bounds from all cells as METADATA and to the actual
subsequence trajectories stored locally by each cell as DATA. Obviously, DATA is
orders of magnitudes more expensive than METADATA to be transferred towards
QN. Therefore we want to intelligently exploit METADATA to identify the subset of
DATA that produces the K highest ranked answers. Figure 11 illustrates two typical
topologies between cells: star and hierarchy. Our proposed algorithms are
equivalently applicable to both of them although we use a star topology here to
simplify our description.

Using this approach we can prune down the number of trajectories that need to
transmited to the query node, in order to find the most similar ones to the query. If we
did not utilize the bounds, on order to find the K trajectories that are most similar to a
query trajectory Q, the query QN can fetch all the DATA and then perform a
centralized similarity computation using the FullM(Q,Ai) method, which is one of the
LCSS, DTW or other Lp-Norm distance measures. The centralized is clearly more
expensive in terms of data transfer and delay. Figure 12 shows that computing the
similarity in a distributed fashion (in the example of figure 12 the similarity measure
is the Longest Common SubSequence) only gives a lower bound to the actual
similarity; consequently some of the trajectories still have to be retrieved by the query
node so that the true most similar trajectory can be determined. Figure 13 shows that
enveloping techniques can be employed to further speed up the computation of the
bounds on the similarity.

Time

cell

A1

MBRA2

MBRA1

Organize
Into

Spatial
Index

MBRMBEQ

Fig. 13. A promising approach for storing and indexing trajectories is to compress the trajecto-
ries by encapsulating them with a small number of minimum bounding rectangles (MBRs). In
addition to good accuracy, a great advantage of this approach is that we can leverage the sig-
nificant body of research by the database community on low dimensionality indexing struc-
tures, such as R-trees and their variants.

6.2 Real-Time Object Tracking

The sensor network setting we consider consists of stationary sensors and mobile
sensors (for example, UAV- mounted, or building mounted with the ability to rotate,
pan and zoom), and the surveillance area is tessellated into a grid. We assume that
each sensor knows its location, and the geographic boundaries of the cells. In an ideal
situation a single sensor can be responsible for each grid cell. However, due to
failures and energy expenditures, this scenario is quite unlikely [Halkidi et al., 2007].
Instead, we would typically encounter situations where multiple sensors may be

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 103

responsible for a single cell, or one mobile sensor may be responsible for more than a
single cell.

Thus we face the challenge of managing the network so as to promptly detect a
moving object as it approaches, and generate and forward messages to notify
appropriate sensors in an energy-efficient way.

To address this issue we introduce a novel framework for sensor management.
Considering our application focus (tracking moving objects) the main issue we address is
handing-off tracking duties from one sensor to the rest of the network as an object is
exiting this sensor’s field of view. In order to visualize our approach let’s consider Fig.
14. We see the tessellation of space, and the location of the sensors, indicated by the
white dots. For each cell there is a single sensor that is responsible for managing the cell,
indicated in the figure as blue dots. Such a sensor is called the leader, and in our
mechanism is selected periodically at random among the sensors in the cell. This is done
to distribute to all the sensors the impact that the work that the leader has to perform has
to the individual sensor resources. The goal of our framework is to enable sensors to
collaborate and pass information among themselves. The distinguishing characteristic of
our framework is that it involves different algorithms for tracking and warning. This
approach can be summarized as follows:

1. Tracking Loop: Tracking loop performs in-cell analysis, and is executed at each
sensor. For all objects tracked in this cell we can generate their trajectories. Using
these trajectories and online techniques such as Kalman filtering, and the
predictive models discussed earlier, we will predict the expected locations of the
target. This is performed for all objects tracked within this cell. The predicted
locations of all these objects can also be used to control the movements of the
mobile sensors that may track the object.

2. Warning Loop: Warning loop addresses cell crossings by a target. This is
visualized in Fig. 14 by the red triangle (representing the target) that is ready to
move outside the cell where it currently resides. In this situation the cell leader
will alert its neighboring leaders, so that they can become aware that a new object
is about to enter their cell. When this is done, the first cell control station will
also forward the tracked object information, so as to best support prediction and
tracking in the next cells. This is in essence a hand-off technique, with the control
stations exchanging information and alerting each other.

Example: In Fig. 14 all neighboring cells have active sensors operating in them;
however, as we mentioned, this may not be the case. When there is no object close to
a cell, the sensors of that cell may be offline (to preserve energy), in which case the
leader must use a wake up protocol to wake some of them up. It may also be the case
that no sensors exist in this cell at all, but it is covered by the dispatch of mobile
sensors. In such a case, the tracked information will be forwarded to a central control
unit that will maintain a log of objects that entered unmonitored cells. If this log
indicates that a substantial number of objects enters unmonitored cells, the central
control unit may suggest the reconfiguration of the network so that some of the
currently unmonitored cells are also covered (for example, moving a mobile sensor
from one cell to another, or changing the sleep cycle of the sensors in the cell).

104 P. Agouris et al.

Fig. 14. Alert messages are forwarded from S1 to the leaders of the neighboring cells (S2, S3
and S4), which are intersected with the region that the target is expected to traverse

Such a system scales well with the number of mobile objects, or the number of
concurrently tracked objects, to easily accept and use more sensors on-line, and to
degrade gracefully when UAVs malfunction or leave an area. This innovative
framework not only controls the placement of sensors, but also manages the storage
of information within our network. As an object moves from one cell to another, its
record follows it. This allows us to have immediate access to an object’s complete
information, including its trajectory before entering a specific location, or before it
was acquired by a specific sensor.

7 Conclusions

In this paper we addressed the issue of mobility in geosensor networks. We presented
key components of a genaral framework for this topic, considering mobility two
levels, with mobile objects in the area monitored by a network of mobile sensors.
More specifically, we presented methods to model the spatiotemporal variations in
position and outline of an object in section 3. The spatiotemporal helix allows us to
model the movement of a car, or the defomrations of a composite object over time,
information that can be recorded in in a spatial database. The content of these records
can the use of be analyzed to compare two or more moving objects, using the
techniques presented in section 4, namely dynamic time warping and LCSS. Through
pose normalization this matching can become independent of rotations, shifts and
scalings, while the use of upper/lower-bounding functions can substantially improve
query response time as described in section 5. Together these solutions allow us to
move from captured spatiotemporal trajectories to comprehensive spatial databases
describing their content, and similarity metrics to support complex analysis and
identify similarly behaving objects. The approach we presented in Section 6 make
suse of these capabilities to define a management plan for mobile sensors in highly
active areas. Even though our inspiration stems from surveillance using distributed
optical sensors (e.g. on-board unmanned aerial vehicles), most of the solutions
presented in this paper are in principle applicable to a wide array of spatiotemporal
datasets (e.g. collected using RFID tags or GPS-enabled cell phones).

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 105

Acknowledgments. This work was supported by the National Science Foundation
through NSF Awards ITR 0121269, IIS 0330481, CNS 0627191, and IIS 0534781,
and by the National Geospatial-Intelligence Agency through NURI award NMA 401-
02-1-2008. We would also like to acknowledge the input of Dr. Arie Croitoru on the
development of the approach outlined in section 4.3.

References

1. Aach, J., Church, G.: Aligning Gene Expression Time Series Data. Bioinformatics 17,
495–508 (2001)

2. Abdelzaher, T., Blum, B., Cao, Q., Evans, D., George, J., George, S., He, T., Luo, L., Son,
S., Stoleru, R., Stankovic, J., Wood, A.: EnviroTrack: Towards an Environmental Comput-
ing Paradigm for Distributed Sensor Networks. In: Proc. Int. Conf. on Distributed Comput-
ing Systems (ICDCS 2004), pp. 582–589 (2004)

3. Agouris, P., Stefanidis, A.: Efficient Summarization of SpatioTemporal Events. Commu-
nications of the ACM 46(1), 65–66 (2003)

4. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence Databases.
In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg
(1993)

5. Agrawal, R., Lin, K., Sawhney, H.S., Shim, K.: Fast Similarity Search in the Presence of
Noise, Scaling and Translation in Time-Series Databases. In: Proc. of the VLDB, pp. 490–
501 (1995)

6. Ailamaki, A., Faloutsos, C., Fischbeck, P., Small, M., VanBriesen, J.: An Environmental
Sensor Network to Determine Drinking Water Quality and Security. SIGMOD Re-
cord 32(4), 47–52 (2003)

7. Altenis, S., Jensen, C.S.: Indexing of Moving Objects for Location-Based Services, De-
partment of Computer Science, Aalborg University (2002)

8. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., Rus, D.: Tracking a Moving
Object with a Binary Sensor Network. In: Proc. Int. Conf. on Embedded Networked Sen-
sor Systems (SenSys 2003), pp. 150–161 (2003)

9. Bandyopadhyay, S., Coyle, E.J.: An Energy Efficient Hierarchical Clustering Algorithm
for Wireless Sensor Networks. In: IEEE INFOCOM 2003, pp. 1713–1723 (2003)

10. Bar-Joseph, Z.G., Gerber, D., Gifford, T.: A New Approach to Analyzing Gene Expression
Time Series Data. In: Proc. Annual Int. Conf. on Research in Computational Molecular
Biology, pp. 39–48 (2002)

11. Berndt, D., Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time Series. In:
Proc. of KDD Workshop, pp. 359–370 (1994)

12. Beymer, D., McLaughlan, P., Coifman, B., Malik, J.: A Real-Time Computer Vision Sys-
tem for Measuring Traffic Parameters. In: Computer Vision Pattern Recognition (CVPR
1997), pp. 495–500 (1997)

13. Bolles, R., Nevatia, R.: A Hierarchical Video Event Ontology in Owl, Pacific Northwest
National Laboratory, Technical Peport PNNL-14981 (2004)

14. Bollobas, B., Das, G., Gunopulos, D., Mannila, H.: Time-Series Similarity Problems and
Well-Separated Geometric Sets. In: Proc. of the 13th SCG, pp. 243–307 (1997)

15. Bozkaya, T., Yazdani, N., Ozsoyoglu, M.: Matching and Indexing Sequences of Different
Lengths. In: Proc. of the CIKM, pp. 128–135 (1997)

16. Brooks, R., Ramanathan, P., Sayeed, A.: Distributed Target Classification and Tracking in
Sensor Networks. Proceedings of the IEEE 91(8), 1163–1171 (2003)

106 P. Agouris et al.

17. Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.: Monitoring Streams - A New Class of Data Management Ap-
plications. In: Proc. VLDB (2002)

18. Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., Girod, L.: Habitat Monitoring: Ap-
plication Driver for Wireless Communications Technology. In: Workshop on Data com-
munication in Latin America and the Caribbean, San Jose, Costa Rica, pp. 20–41 (2001)

19. Chang, T.H., Gong, S., Ong, E.J.: Tracking Multiple People Under Occlusion Using Mul-
tiple Cameras. In: Proc. British Machine Vision Conf. (2000)

20. Chen, A., Muntz, R., Srivastava, M.: Smart Rooms. In: Cook, D., Das, S. (eds.) Smart En-
vironments: Technology, Protocols and Applications, Wiley, Chichester (2004)

21. Collins, R., Lipton, A., Fujiyoshi, H., Kanade, T.: Algorithms for Cooperative Multisensor
Surveillance. Proceedings of IEEE 89(10), 1456–1477 (2001)

22. Conner, S., Heidemann, J., Krishnamurthy, L., Wang, X., Yarvis, M.: Workplace Applica-
tions of Sensor Networks. In: Bulusu, N., Jha, S. (eds.) Wireless Sensor Networks: A Sys-
tems Perspective, Artech House, pp. 289–308 (2005)

23. Das, G., Gunopulos, D., Mannilaz, H.: Finding Similar Time Series. In: Komorowski, J.,
Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 88–100. Springer, Heidelberg
(1997)

24. Dockstader, S., Tekalp, A.M.: Multiple Camera Fusion for Multi-Object Tracking. In:
Proc. IEEE Workshop on Multi-Object Tracking (WOMOT 2001), pp. 95–100 (2001)

25. Elad, M., Tal, A., Ar, S.: Directed Search in a 3D Objects Database. Technical Report, HP
Labs (2000)

26. Eltoukhy, H., Salama, K.: Multiple Camera Tracking, Stanford Image Sensors Group,
Electrical Engineering Department, Stanford University (2001)

27. Faradjian, A., Gehrke, J., Bonnet, P.: GADT: A Probability Space ADT for Representing
and Querying the Physical World. In: Int. Conf. on Data Engineering (ICDE 2002), pp.
201–206 (2002)

28. Gehrke, J., Korn, F., Srivastava, D.: On Computing Correlated Aggregates Over Continual
Data Streams. In: ACM Int. Conf. on Management of Data (SIGMOD), pp. 13–24 (2001)

29. Hadjeleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.: Efficient Indexing of Spatio-
temporal Objects. In: Jensen, C.S., Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E.,
Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidel-
berg (2002)

30. Halkidi, M., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Resilient and Energy Effi-
cient Tracking in Sensor Networks. Int. J. of Wireless and Mobile Computing (2007) (in
press)

31. Huang, Q., Lu, C., Roman, G.: Mobicast: Just-in-Time Multicast for Sensor Networks un-
der Spatiotemporal Constraints. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS,
vol. 2634, pp. 442–457. Springer, Heidelberg (2003a)

32. Huang, Q., Lu, C., Roman, G.: Spatiotemporal Multicast in Sensor Networks. In: Proc. Int.
Conf. on Embedded Networked Sensor Systems (SenSys 2003), pp. 205–217 (2003b)

33. Javed, O., Khan, S., Rasheed, Z., Shah, M.: Camera Handoff: Tracking in Multiple Un-
calibrated Stationary Cameras. In: Proc. Workshop on Human Motion, pp. 113–121 (2000)

34. Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking across Multiple Cameras with
Disjoint Views. In: IEEE Int. Conf. on Computer Vision, vol. 2, pp. 952–957 (2003)

35. Jaynes, Ch.: Acquisition of a Predictive Markov Model using Object Tracking and Corre-
spondence in Geospatial Video Surveillance Networks. In: Stefanidis, A., Nittel, S. (eds.)
GeoSensor Networks, pp. 149–166 (2004)

 Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks 107

36. Jaynes, C., Webb, S., Steele, R., Xiong, Q.: An Open-Development Environment for the
Evaluation of Video Surveillance Systems. In: Proc. PETS, Copenhagen (2002)

37. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet.
In: Proc. Intl. Conf. On Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), San Jose, CA, pp. 96–107 (2002)

38. Keogh, E.: Exact Indexing of Dynamic Time Warping. In: Proc. VLDB, pp. 406–417
(2002)

39. Kim, S., Park, S., Chu, W.: An Index-Based Approach for Similarity Search supporting
Time Warping in Large Sequence Databases. In: Proc. of the ICDE, pp. 607–614 (2001)

40. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.
Soviet Physics-Doklady 10(10), 707–710 (1966)

41. Liu, J., Reich, J., Cheung, P., Zhao, F.: Distributed Group Management for Track Initiation
and Maintenance in Target Localization Applications. In: Zhao, F., Guibas, L.J. (eds.)
IPSN 2003. LNCS, vol. 2634, pp. 113–128. Springer, Heidelberg (2003)

42. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: a Tiny Aggregation Service for
ad-hoc Sensor Networks. In: OSDI 2002, pp. 131–146 (2002)

43. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D.: Wireless Sensor Networks for
Habitat Monitoring, Technical Report IRB-TR-02-006, Intel Laboratory, UC Berkeley
(2002)

44. Makris, D., Ellis, T.: Path Detection in Video Surveillance. Image and Vision Computing
Journal 20(12), 895–903 (2002)

45. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston,
C., Rosenstein, J., Varma, R.: Query Processing, Resource Management, and Approxima-
tion in a Data Stream. In: Proc. Conference on Innovative Data Systems Research (CIDR),
pp. 245–256 (2003)

46. Nascimento, M., Pfoser, D., Theodoridis, Y.: Synthetic and Real Spatiotemporal Datasets.
Data Engineering Bulletin 26(2), 26–32 (2003)

47. Needham, C.J., Boyle, R.D.: Performance Evaluation Metrics and Statistics for Positional
Tracker Evaluation. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS
2003. LNCS, vol. 2626, pp. 278–289. Springer, Heidelberg (2003)

48. Nittel, S., Stefanidis, A.: GeoSensor Networks and Virtual GeoReality. In: Stefanidis, A.,
Nittel, S. (eds.) GeoSensor Networks, pp. 1–9. CRC Press, Boca Raton (2004)

49. Porikli, F.: Trajectory Distance Metric using Hidden Markov Model Based Representation.
In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 39–44. Springer,
Heidelberg (2004)

50. Rhodes, B., Bomberger, N., Seibert, M., Waxman, A.: Maritime Situation Monitoring and
Awareness using Learning Mechanisms. In: IEEE MILCOM 2005, pp. 646–652 (2005)

51. Srivastava, M., Muntz, R., Potkonjak, M.: Smart Kindergarten: Sensor-Based Wireless
Networks for Smart Developmental Problem-Solving Environments. In: Proc. of ACM
SIGMOBILE, pp. 132–138 (2001)

52. Stefanidis, A., Eickhorst, K., Agouris, P., Partsinevelos, P.: Modeling and Comparing
Change using Spatiotemporal Helixes. In: Hoel, E., Rigaux, P. (eds.) ACM-GIS 2003, pp.
86–93. ACM Press, New York (2003)

53. Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity using Real-Time Tracking.
IEEE Trans. on Pattern Analysis & Machine Intelligence 22(8), 747–757 (2000)

54. Stauffer, C., Tieu, K.: Automated Multi-Camera Planar Tracking through Correspondence
Modeling. In: Proc. Computer Vision & Pattern Recognition, vol. I, pp. 259–266 (2003)

108 P. Agouris et al.

55. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing Multi- Dimen-
sional Time-Series with Support for Multiple Distance Measures. In: Proc. SIGKDD, pp.
216–225 (2003)

56. Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D.: Identifying Similarities, Periodicities
and Bursts for Online Search Queries. In: Proc. ACM SIGMOD, pp. 131–142 (2004)

57. Vranic, D., Saupe, D.: Tools for 3D Object Retrieval: Karhunen-Loeve Transform and
Spherical Harmonics. In: Proc. IEEE Work. on Multimedia Signal Processing, pp. 293–
298 (2001)

58. Yand, H., Sikdar, B.: A Protocol for Tracking Mobile Targets using Sensor Networks. In:
IEEE Int. Workshop on Sensor Networks Protocols and Applications, pp. 71–81 (2003)

59. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A Two-Tier Data Dissemination Model for
Large-scale Wireless Sensor Networks. In: MOBICOM 2002, pp. 148–159 (2002)

60. Yi, B.-K., Jagadish, H.V., Faloutsos, C.: Efficient Retrieval of Similar Time Sequences
under Time Warping. In: Proc. of the ICDE, pp. 201–208 (1998)

61. Zeinalipour-Yazti, D., Lin, S., Gunopulos, D.: Distributed Spatio-Temporal Similarity
Search. In: Proc. of ACM CIKM, pp. 14–23 (2006)

62. Zhang, W., Cao, G.: Optimizing Tree Reconfiguration for Mobile Target tracking in Sen-
sor Networks. In: IEEE INFOCOM 2004, vol. 4, pp. 2434–2445 (2004)

63. Zhu, H., Su, J., Ibarra, O.H.: Trajectory Queries and Octagons in Moving Object Data-
bases. In: Proc. of ACM CIKM, pp. 413–421 (2002)

Continuous Spatiotemporal Trajectory Joins

Petko Bakalov and Vassilis J. Tsotras

Computer Science Department, University of California, Riverside
{pbakalov,tsotras}@cs.ucr.edu

Abstract. Given the plethora of GPS and location-based services, que- ries over
trajectories have recently received much attention. In this paper we examine
trajectory joins over streaming spatiotemporal data. Given a stream of spatiotem-
poral trajectories created by monitored moving objects, the outcome of a Con-
tinuous Spatiotemporal Trajectory Join (CSTJ) query is the set of objects in
the stream, which have shown similar behavior over a query-specified time in-
terval, relative to the current timestamp. We propose a novel indexing scheme
for streaming spatiotemporal data and develop algorithms for CSTJ evaluation,
which utilize the proposed indexing scheme and effectively reduce the computa-
tion cost and I/O operations. Finally, we present a thorough experimental evalua-
tion of the proposed indexing structure and algorithms.

1 Introduction

The abundance of position locators and GPS devices enables creation of data manage-
ment systems that monitor streaming spatiotemporal data, providing multiple services
to the end users. The basic architecture of a monitoring system working with spatial
streaming data consists of multiple tracing devices which continuously report their lo-
cation thus forming a spatiotemporal stream. Such streams are collected to the base
station (server) where users submit their queries and continuously receive query results
based on the current state of the data. Unlike traditional snapshot queries that are eval-
uated only once continuous queries require continuous revaluation as the query result
becomes obsolete and invalid with the change of information for the objects.

Result

Query
Clients

GPS
Devices

Antenna

Server

Spatiotemporal
stream

Object
location

Fig. 1. A streaming spatiotemporal architecture

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 109–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

110 P. Bakalov and V.J. Tsotras

Recent research efforts have focused mainly on simple queries (i.e., having just a
single spatial Range [7][23] or Nearest Neighbor queries [33] predicate). However in
many real life monitoring queries there is need for more complex continuous spatial
predicates. For example, users may be interested in discovering pairs of moving objects
which follow similar movement pattern for specified period of time. Consider a security
system inside a building which is tracing person movement. The security officer may
want to continuously check for any security violations or suspicious activities over the
stream of spatiotemporal data coming from the sensors inside the building. One suspi-
cious activity for example can be ”Identify the pairs of (security officers,visitors) that
have followed each other in the last 10 minutes.” since it can be sign for someone trying
to study the security personal.

In this paper we address a novel query for streaming data, called a trajectory join,
i.e., the problem of identifying all pairs of similar trajectories between two datasets. The
trajectory similarity is defined by their spatial closeness (expressed in a condition by a
spatial threshold ε around each trajectory) which should last at least for an interval with
duration δt. So the trajectory join can be expressed as a complex query predicate involv-
ing both the spatial and temporal constraints over the object trajectories. In the definition
of the trajectory join problem for a static data set scenario [2][3] the temporal constraint
δt is an absolute one (For example ”Between 2 a.m and 3 a.m”). The absolute temporal
constraints however do not make sense in a continuous environment since the result for
them never changes. More useful for continuous queries are the relative time constraints.
A relative time constraint uses the current time instance as a reference point. (Exam-
ple: between 2 and 3 hours ago). As the time passes, the value of the current timestamp
changes which makes the relative time constraint slide along the the temporal axis.

Because of the constant reevaluation of the result and the use of relative time con-
straints instead of absolute ones the extension of the static join solutions in the contin-
uous environment is not efficient. A trivial extension of the existing static algorithms to
continuous version can be repetitive execution of the static algorithm every time when
the result has to be refreshed. However this is very expensive as the query evaluation
starts from the beginning every time when the result has to be refreshed.

The prevailing strategy for efficient continuous query evaluation is the incremental
approach [34,33]. This approach implies that the query processor reuse as much as
possible the current result and data structures for future iterations of the evaluation
algorithm.

Nevertheless the CSTJ problem differs form all other continuous spatial predicates
in that it also involves historical data from the stream.

In order to adopt efficiently the incremental approach for evaluation of the CSTJ
queries we need an indexing structure for streaming data, which is able to:

– Answer queries about previous states of the spatiotemporal stream.
– Provide approximation for the object trajectory.
– Support the incremental approach for query evaluation.

To the best of our knowledge there is no indexing schema proposed, which has all
these properties. In this paper we propose a novel indexing structure for spatial streams
which is able to store information about previous states of the spatiotemporal stream
and develop algorithms for CSTJ evaluation, which utilize this indexing structure.

Continuous Spatiotemporal Trajectory Joins 111

2 Related Work

Many join and self-join algorithms have been designed and proposed in the past for
different data types and more specifically for spatial data [5] [19] [21] [27] [13] [31]
[10] [35] [25] [18] [20] [1] [8]. However, these algorithms are not applicable in the case
of spatio-temporal trajectories because they are based on intersections between MBRs
while spatiotemporal trajectory join conditions are much more complex with constraints
in both the spatial and temporal domain.

Recent work in the area of spatiotemporal streams has led to multiple indexing tech-
niques and processing algorithms. They can be divided generally in three groups.

In [7] [23] [26] [24] the use of a simple grid structure is proposed for indexing
the location of the objects inside the spatiotemporal stream. Every single grid cell is
associated with a list of the objects currently residing inside it. Clearly such approach
is very efficient from a computational point of view since the maintenance of the index
structure is straightforward. It can handle very effectively issues like frequent updates,
high arrival raters, the infinite nature of the data and so on. However it can be used only
for a queries focused on the current state of the stream.

Multiple algorithms have been proposed for answering range predicates with the
grid based indexing solutions. Gedik and Liu [7] propose a distributed system for range
queries called ”mobieyes”, and it is assumed that the moving clients can process and
store information. The client receive information about the moving range query from the
server and notifies the server when it is going to enter or leave this query region. Mok-
bel et al [23] implements SINA, a scalable shared execution and incremental evaluation
system, where the execution of continuous range spatiotemporal queries is abstracted
as a spatial join between the set of objects and the set of queries. Continuous evalua-
tion of nearest neighbor queries have also received a lot of attention lately using grid
structures [12] [34] [33] [24]. Koudas et al [12] propose DISC a technique for answer-
ing ε-approximate k nearest neighbor queries over a stream of multidimensional data.
The returned kth Nearest neighbor lies at most on distance d + ε from the query point
where d is the distance between the actual kth Nearest neighbor and the query point.
Yu at al.[34] and Xiong at al. [33] propose similar approaches for answering continuous
NN queries using different distances for pruning. Finally Mouratidis et al. [24] intro-
duced conceptual partitioning which archives a better performance than the previous
approaches by handling updates from objects which fall in vicinity of the query.

The second group of indexing methods uses different tree-like structures. There are
structures based on B+-trees [17] [11], R trees [14] [15] and TPR-trees [32] [16] [29]
[30]. The main objective is to improve the update performance of the indexing structure
since it is the most frequent operation in streaming environment. In [14] the reduction
of the update cost is done trough avoiding the updates for objects that do not move
outside of their MBRs. Later in [15] this technique is generalized trough a bottom - up
update strategy which uses different levels of reorganization during the updates and in
this way avoids the expensive top-down updates. The minimization of the update time
in [17] [11] is achieved trough the use of B+ trees, which have better update character-
istics, instead of traditional multidimensional index structures like R-tree [9] [4]. This
is achieved trough linearization of the representation of the moving objects locations
using space filing curves like the Peano [6] or Z curve.

112 P. Bakalov and V.J. Tsotras

The last group [28,22] of query evaluation methods for streams tries to avoid the ex-
pensive maintenance of index structures over the data. These methods are based on the
notion of ”safe” regions, created around the data [28] or uncertainty regions around the
query [22]. If the object doesn’t leave its safe region no further processing is required.
And the reverse - in [22] objects are considered only if they fall inside the query region
or its uncertainty regions.

All these indexing structures, discussed so far, try to improve the performance by
minimizing the update rate. To the best of our knowledge there has not been any ap-
proach to improve the index performance from point of view of the query evaluation
strategy. Later in this paper we propose a novel indexing structure which has fast object
update rate and is oriented towards the incremental evaluation (i.e. an approach that
reuses the result from the previous step).

3 Problem Definition

Consider a system that continuously monitors the locations of a set of moving objects.
Location updates arrive as a stream of tuples S = 〈u1, u2, . . . , ul, . . .〉 where ui =
〈oi, li, ti〉, and oi is the object issuing the update while li is the new location of the
object on the plane and ti is the current time stamp. li ∈ R

d, oi ∈ N (for simplicity we
can assume a two dimensional plane).

Trajectory. T (oi) of an object oi in a stream S is a sequence of pairs {〈l1, t1〉, . . . ,
〈ln, tn〉}, where li ∈ R

d, ti ∈ N. Let tnow denote the ever increasing current time
instant (tnow ∈ N). The definition of the CSTJ query follows:

Given trajectory sets r and s, the CSTJ query continuously returns all trajectory
pairs 〈T (ori), T (osi)〉 which have been spatially close (within threshold ε) for some
time period δt ending at the current timestamp (i.e. the temporal constraint uses as a
reference point the current timestamp). An example of such a relative time constraint
is the restriction ”in the last 30 minutes”. In contrast, absolute time constraints (e.g.
”between 2:30pm and 3:40pm”) produce a query result that is static and does not
change with time. In a continuous query environment, as the current time proceeds
some objects will expire from the observed period while others will be introduced, thus
continuously changing the join result.

Continuous Spatiotemporal Trajectory Join. Given two sets of moving objects or

and os, a spatial threshold ε and a (relative) time period δt (δt ∈ N), the CSTJ returns
continuously the set of pairs 〈ori, osj〉 such that for every time instance ti between tnow

and tnow−δt the spatial distance between the trajectories T (ori) and T (osj) is less than
the threshold ε.

4 Evaluation Framework

The basic idea behind the evaluation algorithms for the static version of the problem
[2][3] is to find a way to prune as many trajectory pair similarity evaluations as possible.
There are two major elements needed for the efficient evaluation of a trajectory join,
namely:

Continuous Spatiotemporal Trajectory Joins 113

– First we need a compact object trajectory approximation. This requirement is nec-
essary to make the index structure which stores the trajectory approximations small
and thus fit into the main memory for efficient access. It is assumed that the raw
spatiotemporal stream data is too large to be kept in the main memory and has to
be stored on a secondary storage devices. We further assume that the raw trajectory
data is stored in lists of data pages per trajectory where each data page has a pointer
to the next one in the list.

– Second, we require an easy to compute lower bound distance function between the
trajectory approximations.

Using trajectory approximations and lower bound distance functions we can prune a
large number of the pairs from the Cartesian product between the object trajectory sets
T (or) and T (os). Because we work with trajectory approximations instead of the actual
(full) trajectory data a verification step is also needed, where the pairs of trajectories,
not pruned away by the distance function are then verified to satisfy the join criteria
using their actual trajectory data. The lower bound distance function defined in this
paper guarantees that we may have only “false positives” in the verification step (i.e.,
some trajectory pairs not pruned away by the lower bound distance may still not satisfy
the join criteria) but no “false negatives” (i.e., no join result is missed). To remove these
false positives in the final result we need the extra verification step which access the
raw trajectory data on the secondary storage device and verifies for each pair that it
indeed satisfies the join criteria. Hence the total cost of a single evaluation iteration will
comprise of two parts:

– The cost of computing the lower-bounding distances.
– The cost of executing the verification step.

For the continuous version of the problem there are also additional requirements. The
trajectory approximation should be easy to compute and maintain. This requirement is
needed since the approximation is created on the fly as the streaming data enters the
server. For example the static approximation discussed in [2] [3] does not satisfy this
condition because it makes very expensive aggregations over the raw trajectory data
in both the temporal and spatial domains. Moreover the lower bound distance function
should be defined in such way that allows the application of the incremental approach.
This means that it should be possible to reuse the results from one iteration to another.

4.1 Trajectory Approximation and Indexing

To produce the trajectory approximation with the required properties we decided to
use of a uniform spatial grid to discretize the spatial domain. Each object location li
in the stream can be approximated with the grid cell in the boundaries of which it is.
Example of a one dimensional trajectory is shown on figure 2. The trajectory shown
can be approximated as a sequence of grid cell numbers 1112222333. We can write this
approximation in more a compact form < 1, 3 >< 2, 7 >< 3, 10 > by compressing the
consecutive object location approximations in the same grid cell x̄i. They are replaced
by record < x̄i, tj > where ti is the last time instant in the list of consecutive object
location approximations for grid cell x̄i. For example the trajectory on figure 2 has three

114 P. Bakalov and V.J. Tsotras

consecutive location/time instances ui = 〈oi, li, ti〉 all of them in the grid cell 1. These
are time instances 1, 2 ad 3. Instead of having a sequence 111 in the approximation
we put a record with the grid cell number and the last time instance in the sequence
< 1, 3 >. More formally a trajectory approximation can be defined as:

Trajectory Approximation. Given trajectory T (oi) = {< l1, t1 >, . . . < ln, tn >}
of length n, a trajectory approximation is a sequence T̄ (oi) = {< x̄1, t̄1 >, . . . , <
x̄m, t̄m >} where the spatial values contained inside each time frame (ti−1; ti) are
approximated with the grid cell number x̄i and 1 ≤ m ≤ n

Note that this approximation scheme is different from the scheme proposed for the
static version of the join problem [2][3], since it approximates the trajectory data only
in the spatial domain. We thus avoid the costly approximation along the temporal axis
which can be too expensive for the continuous environment.

We proceed with the description of the indexing structure. We propose the creation
of a 2-dimensional index space where both dimensions are temporal (”from” and ”to”
axes) On the “from” temporal axis we plot the time when the object enters a given
cell while the “to” temporal axis depicts the time when the object leaves the grid cell.
Between these two timestamps the object does not move outside the boundaries of the
grid cell. For every record < x̄i, t̄i > in the trajectory approximation we place a two
dimensional point Ii in the indexing space. We refer to these points as indexing points.
A more formal definition of an index point is:

Index point. is a tuple Ii = 〈oi, ḡ, tf , tt, p〉, where oi is the moving object, ḡ is a grid
cell number such that ∩(ḡ, Toi) = true for ∀t ∈ (tf , . . . tt) and p is a pointer to pages
on the disk containing the raw trajectory data for time period (tf ; tt).

For illustration consider the trajectory shown in figure 2. The object stays inside grid
cell 1 between time instances 0 and t1 and has 3 location/time instances ui = 〈oi, li, ti〉
inside this grid cell then it moves to grid cell 2 and stays there between time instances t1
and t2. Finally it moves inside grid cell 3. Figure 3 depicts the corresponding indexing
space for this example. The object movement is approximated with two index points in
the indexing space. Both of them show the time period for which the object was inside
a given grid cell. For example index point 1 in this 2-dimensional space shows that the

Grid
Cells

1 2 3

Time

t1

t2

Fig. 2. One dimensional example

Time
From

t1 t2

Time
To

t1

t2

…
… …

…

Data
Pages

Grid Cell 1

Grid Cell 2

Fig. 3. Indexing space

Continuous Spatiotemporal Trajectory Joins 115

moving object was in grid cell 1 in the time interval (0; t1). Respectively object point
2 shows that moving object was in grid cell 2 in the time interval (t1; t2) and so on. A
trivial observation is the fact that all index points Ii will be placed above the dashed
line on figure 3 which bisects the angle between the two temporal axes (that is because
the timestamp when an object leaves an grid cell is bigger than the timestamp when the
object enters a grid cell e.g. ∀Ii; Ii.tf < Ii.tt).

With the above approximation, an object trajectory is transformed to a set of index
points in the 2 dimensional indexing space. Inside each index point we keep a pointer
to the data page on the secondary level storage which stores the raw trajectory data
approximated with this indexing point Ii. For example for index point 1 we keep a
pointer to the data page on the disk which has the raw data for time instances 1, 2 and
3. These pointers are used in the verification step when we have to check if the objects
indeed satisfy the join criteria using the raw data. Instead of accessing all records for
the given trajectory we access only those data pages which have the data for the period
of interest. To make the access to the indexing space more efficient we can now use
variety of tree-like spatial indexes (R tree or kdb tree) build over all index points in the
indexing space.

There are two major advantages of the proposed indexing structure over simple so-
lutions like keeping a trajectory tail for the last δt time instances. First the size of this
index is expected to be smaller than the size of an in memory data structure, which holds
the fresh trajectory tail. This is because in the proposed index we keep information only
for the moments when an object changes its location grid cell instead of keeping all lo-
cation/timestamp pairs for a period δt. The second advantage is that by issuing a range
query inside the index space we can efficiently locate all moving objects which change
their location grid cell for the specified time period without accessing all trajectory tails
(This will be discussed in detail in section 5).

As time passes, more and more index points will be added to the indexing space.
The tree structure built over this space will grow and it performance will eventually
deteriorate. Moreover we would like to keep the indexing space and the tree structure
over it small enough to fit in main memory for fast access. Possible solution to this
problem is to delete all index points Ii from the index space which are too ”old”. A
data older than the time period δt cannot participate as a result so we can safely prune
these regions of the indexing space. For example if the time period is δt = 2 hours then
there is no need to keep data older than 2 hours in the structure. The index points, which
we can safely remove from the index structure, will be in the shaded region, shown on
figure 4.

4.2 Lower Bound Distance Function

Having defined the trajectory approximation we need an appropriate lower bound dis-
tance function between the approximated trajectories. Given that the minimal distance
between two grid cells is a lower bound of the actual distance between the object loca-
tions (d(x̄i, x̄j) ≤ d(li, lj)), as it is shown on figure 5, we can define a lower bound

116 P. Bakalov and V.J. Tsotras

From

To

tnow - t

tnow

tnow - t

t

Area to
delete

Fig. 4. Indexing space to remove

X

Y

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Min dist

Actual Distance

Fig. 5. Min. distance between two grid cells.

function between the trajectory approximations using the minimal Euclidean distance
between the grid cells, i.e.:

D̄δt,ti(T̄ (ori), T̄ (osi)) =
√ ∑

i∈(ti;ti−δt)

d(r̄i, s̄i)2

5 Query Evaluation

We now proceed with the CSTJ evaluation algorithm which assumes a spatiotemporal
stream of moving objects approximated in an index structure built as described in sec-
tion 4.1. There are two major processes in a continuous query evaluation framework
that are working in parallel. The first process is keeping the indexed space consistent
with the spatiotemporal stream. The second process is responsible for the continuous
reevaluation of the CSTJ queries in the system. During its lifetime, a CSTJ query goes
through two phases, namely:

– Phase 1. Initial formation of the query result.
– Phase 2. Continuous query reevaluation.

During the first phase the CSTJ query is introduced into the system and the initial result
is computed from scratch. Once the initial result of the query is formed, the evaluation
of the continuous query moves to the second phase where the query stays in till it is
taken out of the system. In this phase the query is reevaluated regularly and the results
from the reevaluations are constantly send to the end users. In the remaining of this
section we look at each phase in detail.

5.1 Initial Formation of the Query Result

When the query is first introduced into the system, the result has to be computed from
scratch. For this phase we modify the “multiple-origin” static join algorithm discussed
in [3] to be used with the described indexing scheme. In particular we need to find all

Continuous Spatiotemporal Trajectory Joins 117

pairs of trajectories in the time period (tn − δt; tn) where the corresponding grid cells
for every time instance are not further apart than the threshold ε, i.e. d(r̄i, s̄i) ≤ ε, for
i ∈ (tn − δt; tn).

Each trajectory approximation of length δt can be viewed as a δt-dimensional point
in a transformed δt-dimensional space. Using distance function D̄δt defined over the
trajectory approximations we can define an ordering of the points in δt-dimensional
space by sorting them according to their distances from some set of origins Ōi.

An origin Ōi is an approximated trajectory with length δt and can be selected ar-
bitrarily. We assign to every trajectory approximation T̄ (oi) a set of q scores (w1, . . .,
wj , . . . wq), where each score wj is simply the distance D̄δt(Ōj , T̄ (oi)), between the
trajectory approximation T̄ (oi) and origin Ōj . Approximations with different distances
from a given single origin Ōj are considered to be dissimilar. The reverse however is
not true: we can have approximations with the same distance from origin Ōj which are
still not spatially close. To reduce the probability of this happening we thus use multiple
origins. The verification step however is still needed.

To compute the object scores (w1, . . . , wj , . . . wq) we use the index space maintained
over the spatiotemporal stream. We locate the portions of the trajectory approximations
which belong to the time interval (tn − δt; tn) by issuing spatial queries in this index
space. Given a grid cell and a time interval (tf ; tt) we can partition the space in four
regions, as shown in figure 6.

tfotfrom From

1

2

3

To

tto

tfrom tto

tfrom tto

tfrom tto

tfrom tto

tfrom

4

Positive
Updates
(Region 1)

 (Region 4)

Negative
Updates
(Region 2)

Through
Objects
(Region 3)

Fig. 6. Index space partitioning

Region 2 contains index points for all these objects which were inside the given grid
cell before the beginning of the interval tf and which moved to another grid cell at some
point during the interval (tf ; tt). Region 1 contains the objects which moved inside the
given grid cell at some point during the interval (tf ; tt) and stayed there until the end
of the time interval. Region 3 contains objects which were inside the given grid cell all
the time during the interval (tf ; tt) and region 4 contains objects which moved in and
then moved out of the grid cell during the time interval. In regions 1, 2 and 3 for any
time period we can have at most one index point Ii per object (for example, having two
indexing points in region 3 would mean that the object was at the same time in two
different grid cells during the specified period which is a contradiction).

118 P. Bakalov and V.J. Tsotras

Using spatial queries to locate the index points in these partitions of the index space
for time interval (tn − δt, tn) we can compute the trajectory scores by first computing
the squared sum of distances between trajectory approximations and origin Ōj : Let I1

be the set of indexing points for object oi in region 1, I2 the set of indexing points in
region 2 and so on. The squared sum of distances between trajectory approximation
T̄ (oi) and origin Ōj will be:

σti,Ōj
(oi) =

∑

⎧
⎪⎪⎨

⎪⎪⎩

(I.tt − (ti − δt))d(I.ḡ, Ōj)2 for I ∈ I1;
(ti − I.tf)d(I.ḡ, Ōj)2 for I ∈ I2;
(δt)d(I.ḡ, Ōj)2 for I ∈ I3;
(I.tt − I.tf)d(I.ḡ, Ōj)2 for I ∈ I4.

wj(oi) = D̄δt,tn(T̄ (oi), Ōj) =
√

σtn,Ōj
(oi)

Since the lower bound distance D̄ is a metric, if two trajectory approximations have
at least one wj score larger than

√
ε2δt, then there exists at least one time instance ti in

which the corresponding grid cells from the approximations are farther apart than the
threshold ε. The distance between the grid cells is a lower bound between the actual
position of the objects so the corresponding objects do not satisfy the join criteria.

To locate candidate join pairs we sort the trajectory approximations T̄ (oi) using the q
scores, in order of w1, w2, ..., etc. That is, if there is a group of trajectory subsequences
having the same value of w1, they are further sorted on their w2 score and so on.

Having the trajectory approximation scores w1, w2, ..., computed and the approx-
imations sorted, we can locate the pairs for which could possibly join. This is done
performed by a sliding window algorithm which passes over the sorted list of approx-
imations. We set the size of the window to 2

√
ε2δt and place the midpoint of the win-

dow on the first approximation from dataset s, say T̄ (osj), in the sorted list. For all
approximations T̄ (ori) of dataset r falling inside the window, we compare their scores
w1, ..., wq with the corresponding scores of T̄ (osj). If all of them are within the thresh-
old

√
ε2δt we save the pair 〈osj , ori〉 as possible join candidate. Then, we slide the

window and place its midpoint on the next element in dataset s and and so on. At the
end we verify the generated candidate pairs loading the raw data from the secondary
storage. To reduce the number of I/O we follow the pointers inside the index points to
locate the data pages storing information for this time period instead of having a full
scan over the the pages storing raw trajectory data.

We illustrate the initial formation of the result with an example. Assume that we
have 3 moving objects between time instances 1 and 11. Each object report its location
every time instance (see figure 7 - the locations where an object reports its position are
marked with a dot). We discretize the space with a grid 3x3 where each grid cell is a
square with side 10. The minimal distance between the grid cells is given in table 6.1.

The indexing space for this example is shown in figure 8. Next to each index point
we have the moving object number oi to which it belongs and the grid cell number x̄j

in format 〈oi, x̄j〉. Consider a CSTJ query with spatial threshold ε = 3 and time period
δt = 3, that is introduced in the system on time instance 6. Object o1 and object o3

belong to the first set s and object o2 belongs to the second set r. The partitioning for
time interval (3; 6) is shown in figure 8.

Continuous Spatiotemporal Trajectory Joins 119

Algorithm 1. CSTJ - Initialization phase
Input: Query Q = {or, os, δt, ε} current time instance ti

Output: Set of pairs (ori, osj) where T (ori) and T (osj) are joined for the last δt time instances
1: Set σ ← ∅, W ← ∅, V ← ∅, Res ← ∅
2: Find Origins(O1 .. Om);
3: ComputeApproximations(Õ1 ...Õm);
4: CreatePartitions(ti − δt,ti);
5: GetIntexPoints(I1, I2, I3, I4);
6: for each origin Oj in O1 .. Om do
7: for each moving object or in or ∪ os do
8: Compute σti,Ōj

(Ii.o)
9: σ.push(σti,Ōj

(Ii.o));
10: for all σti,Ōj

(oi) in σ do

11: Wi,j =
√

σti,Ōj
(oi)

12: W .sort()
13: for (i = 1; i¡= W .size; i++) do
14: Entry ox = W [i].objectID
15: if x ∈ or then, FindPairsInWindow(ox,i,W ,V ,ε)
16: while V not empty do
17: Entry < ori, osj >= V .top
18: if ori ∈ or and osj ∈ os satisfy the criteria then
19: R.push(ori, osj)
20: Return R

Grid No 11 12 13 21 22 23 31 32 33
11 0 0 10 0 0 10 10 10 14
12 0 0 0 0 0 0 10 10 10
13 10 0 0 10 0 0 14 10 10
21 0 0 10 0 0 10 0 0 10
22 0 0 0 0 0 0 0 0 0
23 10 0 0 10 0 0 10 0 0
31 10 10 14 0 0 10 0 0 10
32 10 10 10 0 0 0 0 0 0
33 14 10 10 10 0 0 10 0 0

We have three indexing points in region 1 (one for each moving object) and three
indexing points in region 2. This means that during this time period each object left
the grid cell where it was in the beginning of the period and moved into another grid
cell. For simplicity we choose a scenario with two origins. Both of them are trajectory
approximations with length δt = 3. Again for simplicity we choose the first one to be
Ō1 = 33, 33, 33 and the second one Ō2 = 31, 31, 31. We can then compute the scores
for the first trajectory w1(o1) =

√
(4 − (6 − 3))(14)2 + (6 − 4) ∗ (10)2 = 19, 89

and w2(o1) =
√

(4 − (6 − 3))(10)2 + (6 − 4) ∗ (10)2 = 17, 32. In the same way we
compute the scores for the other moving objects w1(o2) = 19, 89, w2(o2) = 17, 32,
w1(o3) = 14, 14 and w2(o3) = 0.

120 P. Bakalov and V.J. Tsotras

Algorithm 2. FindPairsInWindow
Input: ox,i,W ,V ,ε
1: j ← i
2: while W [j].scores - ox.scores <

√
ε2δt do

3: Entry oy = W [j]
4: if oy ∈ os then, V .push(ox, oy)
5: j − −
6: j ← i
7: while W [j].score - ox.score <

√
ε2δt do

8: Entry oy = W [j]
9: if oy ∈ os then, V .push(ox, oy)

10: j ++

X

Y

Object 3

Object 2

Object 1

11 12 13

21 22 23

31 32 33

10 20 30

10

20

Fig. 7. Moving objects example

tfrom

<2,11>

<1,21>

<3,31>

<2,12>

<2,22>

<2,33>

<1,11>

<1,12>

<1,13>

<3,22>

<3,32>

<3,33>

tfrom

tto

3 6

3

6

Fig. 8. Partitioning for time interval (3;6)

tfrom

<2,11>

<1,21>

<3,31>

<2,12>

<2,22>

<2,33>

<1,11>

<1,12>

<1,13>

<3,22>

<3,32>

<3,33>

tfrom

tto

3 6

3

6

Fig. 9. Time intervals (3;4) and (6;7)

Objects are sorted and placed on a line and then we use the sliding window algorithm
where the size of the window is 2

√
ε2δt = 2

√
323 = 5, 19 (figure 10). We place the

midpoint of the window on the first s element in the sorted list o3 we check if there

Continuous Spatiotemporal Trajectory Joins 121

are elements from the second set inside the window. Since there are none we place the
window over the next s element o1. This time there is an element from the set r inside
the window - o2. Thus we report the pair 〈o1, o2〉 as a candidate pair. There are no more
elements in the sorted list so we exit the sliding window algorithm. At the end of the
initial evaluation phase we check every candidate pair (〈o1, o2〉 in our example) if it
indeed satisfies the query criteria.

5.2 Continuous Query Reevaluation

Once the initial result is formed the evaluation of the query moves to its second phase
where the query stays active until it is removed from the monitoring system. In this
phase we constantly reevaluate the query result and modify it according to the current
state of the stream S. To minimize the reevaluation cost we keep the intermediate re-
sults produced in every iteration and apply to them the changes which have occurred
in the stream. We keep the first T (oi).f̄ and the last grid cell T (oi).l̄ from the trajec-
tory approximations computed in the previous step along with the sum of the squared
distances to the origins σti,Ōj

(oi).

0 10 o3 o2 o1

0 10 o3 o2 o1

Fig. 10. Sliding window algorithm

Assume that the last query reevaluation was at time instance tp and the current times-
tamp is tn. Using the partitioning in the index space shown on figure 3 we can compute the
grid cells which form the trajectory approximation for the time period (tp − δt; tn − δt)
and those who form the approximation for (tp; tn). These portions in the trajectory ap-
proximation sustain the difference between the approximations at time instances tp and
tn. To do so we issue two spatial queries for regions 1, 2 and 4, using time interval
(tp − δt; tn − δt) and also time interval (tp; tn) to create the partitioning in the index
space as it is shown on figure 6. We are focused on these 3 partitions because they contain
information about changes in object location during these periods. If there is no change
in a location for the period (tp − δt; tn − δt) (e.g there are no indexing points for this
object in regions 1,2 and 4 in the partitioning for this time interval) then the object is in-
side the first grid cell T (oi).f̄ for the whole time interval (tp−δt; tn−δt). The same for
time interval (tp; tn). If there is no index point in regions 1,2 and 4 for this time period
for some object, then the object is still inside grid cell T (oi).l̄. This way keeping the first
and the last grid from the grid approximation from the previous time period we avoid the
costly spatial query inside region 3 which has the biggest size of all regions.

Using indexing points In from the first spatial query along with the last grid cell
T (oi).l̄ we compute the sum of squared distances for the interval (tp − δt; tn − δt)

Δneg =
∑

⎧
⎪⎪⎨

⎪⎪⎩

(tn − tp)d(T (oi).l̄, Ōj)2 if In1 ∪ In2 ∪ In3 ∈ ∅;
(I1.tt − (tp − δt))d(T (oi).l̄, Ōj)2 for I ∈ In1;
(tp − I1.tf)d(I1.ḡ, Ōj)2 for I ∈ In2;
(I1.tt − I1.tf)d(I1.ḡ, Ōj)2 for I ∈ In4.

122 P. Bakalov and V.J. Tsotras

This sum of squared distances for (tp−δt; tn−δt) has to be removed from σtn,Ōj
(oi)

from the previous iteration.
In analogy we compute the sum of squared distances for the period (tp; tn) using the

indexing points Ip from the second query and the first grid cell T (oi).f̄ .

Δpos =
∑

⎧
⎪⎪⎨

⎪⎪⎩

(tn − tp)d(T (oi).f̄ , Ōj)2 if Ip1 ∪ Ip2 ∪ Ip3 ∈ ∅;
(I2.tt − (tn − δt))d(T (oi).f̄ , Ōj)2 for I ∈ Ip1;
(tn − I2.tf)d(I2.ḡ, Ōj)2 for I ∈ Ip2;
(I2.tt − I2.tf)d(I2.ḡ, Ōj)2 for I ∈ Ip4.

Having σtp,Ōj
(oi) from the previous iteration, we can compute the scores for the

current time instance

σtn,Ōj
(oi) = σtp,Ōj

(oi) + Δpos − Δneg

wj(oi) = D̄δt,tn(T̄ (oi), Ōj) =
√

σtn,Ōj
(oi)

The trajectory scores w1, w2, ..., are resorted and processed with the multiple origins
sliding window evaluation algorithm to produce the result for time instance tn. An
advantage of this reevaluation schema is that by having a short reevaluation period, the
size of regions 1, 2 and 4 in the index partitioning schema will be comparatively small
resulting in a limited number of index points accessed during the reevaluation steps.

We will illustrate the reevaluation phase using the same example shown in figure 7.
Assume that the query reevaluation is done every time instance and that the current time
instance is 7 (e.g one time instance after the initial evaluation). We create the partition-
ing for time intervals (3; 4) and (6; 7) according to the algorithm. The result is shown
on figure 9. There are two indexing points in both regions 2 and 3 (they belong to ob-
jects o1 and o2) for time interval (3; 4) and one indexing point in the same regions for
time interval (6; 7) (generated from object o2). There are no indexing points for object
3 which means that this object did not change its grid cell during the interval (3; 4) and
for this period it was inside grid cell 31 (this is the first grid cell T (o3).f̄ = 31 in the
trajectory approximation in the previous evaluation step done for time period (3; 6)). In
analogy object 3 was inside grid cell 22 (which is T (o3).l̄) during the interval (6; 7).
We compute Δneg(o3, Ō1) = (4 − 3)102 = 100, Δneg(o3, Ō2) = (4 − 3)02 = 0,
Δpos(o3, Ō1) = (7 − 6)02 = 0 and Δpos(o3, Ō2) = (7 − 6)02 = 0. So the updated

scores for object 3 are w1(o3) =
√

σt6,Ō1
(o3) + Δpos(o3, Ō1) − Δneg(o3, Ō1) =

√
200 − 100 = 10 and w2(o3) =

√
σt6,Ō2

(o3) + Δpos(o3, Ō2) − Δneg(o3, Ō2) =
√

0 = 0. Similarly, Δneg(o1, Ō1) = 196, Δneg(o1, Ō2) = 100, Δpos(o1, Ō2) = 100,
Δpos(o1, Ō2) = 100, Δneg(o2, Ō1) = 196, Δneg(o2, Ō2) = 100, Δpos(o2, Ō2) =
100, Δpos(o2, Ō2) = 100 and the new scores for objects o1 and o2 w1(o1) = 17.32,
w2(o1) = 17.32, w1(o2) = 17.32 and w2(o2) = 17.32. Then the objects are resorted
using the new scores and the sliding window algorithm is re-run.

Continuous Spatiotemporal Trajectory Joins 123

Algorithm 3. CSTJ - Continuous phase

Input: Query Q = {or, os, δt, ε},σ,Õ1...Õm,tp,tn

Output: Set of pairs (ori, osj) where T (ori) and T (osj) are joined for the last δt time instances
1: Set W ← ∅, V ← ∅, Res ← ∅
2: CreatePartitions(tp; tn);
3: GetIntexPoints(Ip1, Ip2, Ip4);
4: CreatePartitions(tp − δt; tn − δt);
5: GetIntexPoints(In1, In2, In4);
6: for each origin Oj in O1 .. Om do
7: for each moving object or in or ∪ os do
8: Compute Δpos,i,j

9: Compute Δneg,i,j

10: σ.pop(σtp,Ōj
(Ii.o));

11: σtn,Ōj
(Ii.o) = σtp,Ōj

(Ii.o) + Δpos,i,j − Δneg,i,j

12: σ.push(σtn,Ōj
(Ii.o));

13: for all σtn,Ōj
(oi) in σ do

14: Wi,j =
√

σtn,Ōj
(oi)

15: W .sort()
16: for (i = 1; i¡= W .size; i++) do
17: Entry ox = W [i].objectID
18: if x ∈ or then, FindPairsInWindow(ox,i,W ,V ,ε)
19: while V not empty do
20: Entry < ori, osj >= V .top
21: if ori ∈ or and osj ∈ os satisfy the criteria then
22: R.push(ori, osj)
23: Return R

6 Experimental Evaluation

We proceed with the experimental evaluation of the proposed indexing structure and
algorithms for continuous evaluation of CSTJ queries.

6.1 Experimental Environment

In our experiments we use synthetic data to test the behavior of the proposed technique
and indexing structure under different settings. We generated synthetic datasets of mov-
ing object trajectories. The datasets are generated by simulation using the the freeway
network of Indiana and Illinois (see figure 11). We use up to 150,000 objects moving in
a 2-dimensional spatial universe which is 1,000 miles long in each direction. The ob-
ject velocities follow a Gaussian distribution with mean 60 mph, and standard deviation
15 mph. We run simulations for 1000 minutes (time-instants). Objects follow random
routes on the network traveling through a number of consecutive intersections and re-
port their position every time-instant. In addition, at least 10% of the objects issue a
modification of their movement parameters per time-instant. We choose an R tree with
utilization factor 64% as an indexing structure build on the top of the indexing space.

124 P. Bakalov and V.J. Tsotras

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Fig. 11. The map used in the simulations

The average number of time/location tuples 〈ti, li〉 per index point I is 11 (it is for the
selected speed of 60 mph - later in this section we will present experimental results for
objects with average speed less than 60 mph). The maximal relative temporal constraint
in the queries is set to δt = 40 minutes. For the maximal time period δt = 40 minutes,
the R tree build over the indexing space has the properties described in the table below.

Property Value

Tree height 5
Number of nodes 39900
Leaf capacity 20
Index capacity 20

To test the proposed techniques we use two measures: The average number of index
node accesses and the average number of data pages per query that need to be retrieved
from storage for verification of the result, assuming that one random access is needed for
this operation. We also measure the number of trajectory pairs which satisfy the query
(e.g the size of the result). We evaluate the query performance in both the initialization
and continuous reevaluation phases. Query reevaluation is performed every 2 minutes.

6.2 Experimental Results

Varying the Dataset Size. In the first group of experiments we measure the perfor-
mance against different data set sizes. We use 4 different datasets with sizes varying
from 25,000 up to 150,000 moving objects. The spatial threshold is set to ε = 30 miles
and the time period δt is set to 20 minutes. The results for the index nodes access, data
page access and the number of pairs are shown in figures 12, 13 and 14. As the dataset
size increases, the numbers of data pages and index nodes accessed are also growing.
As depicted in figure 12, the number of data pages accessed in the initialization and the
continuous phases are similar due to the similar number of candidate pairs generated
in both phases. The index node access however (figure 13) differs substantially in the
two phases. In the continuous phase due to the incremental approach the number of
the accessed index nodes is much smaller than in the initial phase. In the continuous
phase we do not access the indexing points in region 3 which has the largest size of all
4 regions. Though the distribution of the points in the indexing space is not uniform
this region has the biggest number of index points from all four regions in the index
space partitioning. As expected, the number of trajectory pairs which satisfy the query
is growing with the increase of the dataset size (figure 14).

Continuous Spatiotemporal Trajectory Joins 125

0

50000

100000

150000

200000

250000

300000

350000

25 50 100 150

Dataset size

D
at

a
pa

ge
s

Initial phase Continuous phase

Fig. 12. Size: Data pages

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

25 50 100 150

Dataset size

N
od

e
ac

ce
ss

Initial phase Continuous phase

Fig. 13. Size: Index nodes

0
100
200
300
400
500
600
700
800
900

1000

25 50 100 150

Dataset size

N
um

be
r

of
 p

ai
rs

Initial phase Continuous phase

Fig. 14. Size: Result set size

101500

102000

102500

103000

103500

104000

104500

105000

105500

106000

20 30 40 50

Time period

D
at

a
pa

ge
s

Initial phase Continuous phase

Fig. 15. Time: Data pages

g

0

50000

100000

150000

200000

250000

300000

20 30 40 50

Time period

N
od

e
ac

c
es

s

Initial phase Continuous phase

Fig. 16. Time: Index nodes

g

0

50

100

150

200

250

300

10 20 30 40

Time period

N
um

be
r

of
 p

ai
rs

Initial phase Continuous phase

Fig. 17. Time: Result set size

Varying the Spatial Threshold ε. In the next set of experiments we test the behavior of
the algorithm for increasing query threshold ε (while using a fixed time-interval δt = 20
minutes). The intuition behind this set of experiments is that by increasing the spatial
threshold ε the query becomes more relaxed and thus more expensive for evaluation.
We use four different values for ε varying from 10 to 40 miles. The results are shown in
figures 15 16 and 17. As expected with the increase of the threshold we have moderate
increase in the number of candidate pairs and the number of result pairs (figure 17). Due
to the increased number of reported candidate pairs the data pages accessed (figure 15)
also increase since each candidate pair has to be tested using the raw trajectory data.
The number of index node accessed however remains constant since the trajectory score
computation does not depend on the threshold ε (figure 16).

Varying the Time Period δt. In the next group of experiments we tested the behavior of
the proposed algorithm for different values of the time period δt varying from 20 up to 50
minutes. We use dataset containing 50,000 moving objects. The spatial threshold is set to
ε = 20 miles. As it can be depicted from the plots, the number of index nodes accessed
during the initialization phase (figure 19) is increasing proportionally to the increase of
the time period δt. This proportional increase is due to the fact that larger time periods δt
create larger regions 1 and 2 in the space indexing partitioning resulting in larger number
of indexing nodes accessed for these two regions. From the plot in figure 18 it can be seen
that after time period δt = 30 minutes the number of raw data I/Os decrease. This is due
to the fact that by increasing the length of the query it becomes more restrictive. We have
fewer candidates generated and therefore fewer raw data accesses.

The decreased number of candidate pairs results also in a smaller number of pairs in
the result set as it can be seen on figure 20.

126 P. Bakalov and V.J. Tsotras

190000

195000

200000

205000

210000

215000

10 20 30 40

Threshold

D
at

a
pa

ge
s

Initial phase Continuous phase

Fig. 18. ε: Data pages

0

100000

200000

300000

400000

500000

600000

10 20 30 40

Threshold

N
od

e
ac

ce
ss

Initial phase Continuous phase

Fig. 19. ε: Index nodes

0

100

200

300

400

500

600

700

800

10 20 30 40

Threshold

N
um

be
r

of
 p

ai
rs

Initial phase Continuous phase

Fig. 20. ε: Result set size

g p g

195000

200000

205000

210000

215000

220000

225000

30 40 50 60

Speed

D
at

a
pa

ge
s

Initial phase Continuous phase

Fig. 21. Speed: Data pages

g

0

20000

40000

60000

80000

100000

120000

140000

30 40 50 60

Speed

N
od

e
ac

ce
ss

Initial phase Continuous phase

Fig. 22. Speed: Index nodes

g

0

100

200

300

400

500

600

30 40 50 60

Speed

N
um

be
r

of
 p

ai
rs

Initial phase Continuous phase

Fig. 23. Speed: Result set size

Varying the Average Speed of the Moving Objects. All previous experiments were
performed using datasets where the average speed is set to 60 mph which is reasonable
for a highway traffic. In the last set of experiments we study how the speed of the mov-
ing objects affects our algorithm. The intuition here is that by having a slowly moving
objects in the system, it will take more time for the object to reach the boundaries of a
cell and move to another one. The number of time/location tuples 〈ti, li〉 per index point
Ii is increased and the total number of index points in the indexing space is decreased.
We run this set of experiments with four datasets of 100,000 moving objects, where the
average speed varies from 30mph to 60mph. The spatial threshold in the query is set to
ε = 30 miles and the time interval δt is 20 time instances. As expected, the decrease of
the average speed in the dataset results in a decrease of the number of indexing nodes
accessed (figure 22). The indexing space becomes less dense with the decrease of the
average speed. For the same time interval and the same number of moving objects the
number of time/location tuples per index point in the 30 mph dataset is 70% from the
one in the 60 mph dataset. The number of the trajectory pairs in the result set (figure
23) and the number of data pages I/Os (figure 21) however increase with the decrease
of the average speed. This is because in a pair of slow objects, it takes more time for
one of them to move on distance ε from the second one. So if a pair of slowly moving
objects, satisfies the join criteria at one time instance it is more likely to satisfy it in
the next time instance. This results in a bigger number of candidate pairs and therefore
increased number of raw data I/Os as it can be depicted in figures 21 and 23.

7 Conclusions

We presented an algorithm and an index structure for efficiently evaluating continuous
trajectory join queries. Our technique uses compact trajectory representations to build a

Continuous Spatiotemporal Trajectory Joins 127

very small index structure which evaluates approximate answers utilizing a specialized
lower bounding distance function. Then, a post filtering step uses only a small fraction
of the actual trajectory data before the correct query results can be produced. As fu-
ture work we plan to extend our techniques for more complex streaming queries with
temporal constraints.

References

1. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-based spa-
tial join. In: Proc. of Very Large Data Bases (VLDB), pp. 570–581 (1998)

2. Bakalov, P., Hadjieleftheriou, M., Keogh, E., Tsotras, V.J.: Efficient trajectory joins using
symbolic representations. In: Proc. of the International Conference on Mobile Data Manage-
ment (MDM), pp. 86–93 (2005)

3. Bakalov, P., Hadjieleftheriou, M., Tsotras, V.J.: Time relaxed spatiotemporal trajectory joins.
In: GIS 2005: Proceedings of the 13th annual ACM international workshop on Geographic
information systems, pp. 182–191 (2005)

4. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust
access method for points and rectangles. In: Proc. of ACM Management of Data (SIGMOD),
pp. 220–231 (1990)

5. Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient processing of spatial joins using r-trees. In:
Proc. of ACM Management of Data (SIGMOD), pp. 237–246 (1993)

6. Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval. In: Proc. of ACM Sympo-
sium on Principles of Database Systems (PODS), pp. 247–252 (1989)

7. Gedik, B., Liu, L.: MobiEyes: Distributed Processing of Continuously Moving Queries
on Moving Objects in a Mobile System. In: Bertino, E., Christodoulakis, S., Plexousakis,
D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 67–87. Springer, Heidelberg (2004)

8. Gunadhi, H., Segev, A.: Query processing algorithms for temporal intersection joins. In:
Proc. of International Conference on Data Engineering (ICDE), pp. 336–344 (1991)

9. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. of ACM
Management of Data (SIGMOD), pp. 47–57 (1984)

10. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial databases. In:
Proc. of ACM Management of Data (SIGMOD), pp. 237–248 (1998)

11. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient b+-tree based indexing of of
moving objects. In: Proc. of Very Large Data Bases (VLDB) (2004)

12. Koudas, N., Ooi, B.C., Tan, K.-L., Zhang, R.: Approximate nn queries on streams with guar-
anteed error/performance bounds. In: Proc. of Very Large Data Bases (VLDB) (2004)

13. Koudas, N., Sevcik, K.C.: Size separation spatial join. In: Proc. of ACM Management of
Data (SIGMOD), pp. 324–335 (1997)

14. Kwon, D., Lee, S., Lee, S.: Indexing the current positions of moving objects using the lazy
update r-tree. In: Proc. of the International Conference on Mobile Data Management (MDM),
pp. 113–120 (2002)

15. Lee, M.-L., Hsu, W., Jensen, C.S., Teo, K.L.: Supporting frequent updates in R-Trees: A
bottom-up approach. In: Proc. of Very Large Data Bases (VLDB) (2003)

16. Lin, B., Su, J.: On bulk loading tpr-tree. In: Proc. of the International Conference on Mobile
Data Management (MDM) (2004)

17. Lin, D., Jensen, C.S., Ooi, B.C., Saltenis, S.: Efficient indexing of the historical, present, and
future positions of moving objects. In: Proc. of the International Conference on Mobile Data
Management (MDM), pp. 59–66 (2005)

128 P. Bakalov and V.J. Tsotras

18. Lo, M.-L., Ravishankar, C.V.: Spatial joins using seeded trees. In: Proc. of ACM Manage-
ment of Data (SIGMOD), pp. 209–220 (1994)

19. Lo, M.-L., Ravishankar, C.V.: Spatial hash-joins. In: Proc. of ACM Management of Data
(SIGMOD), pp. 247–258 (1996)

20. Mamoulis, N., Papadias, D.: Multiway spatial joins. ACM Transactions on Database Systems
(TODS) 26(4), 424–475 (2001)

21. Mamoulis, N., Papadias, D.: Slot index spatial join. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 15(1), 211–231 (2003)

22. Mokbel, M.F., Aref, W.G.: Gpac: generic and progressive processing of mobile queries over
mobile data. In: Proc. of the International Conference on Mobile Data Management (MDM),
pp. 155–163 (2005)

23. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable incremental processing of continuous
queries in spatiotemporal databases. In: Proc. of ACM Management of Data (SIGMOD)
(2004)

24. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: an efficient
method for continuous nearest neighbor monitoring. In: Proc. of ACM Management of Data
(SIGMOD), pp. 634–645 (2005)

25. Papadopoulos, A., Rigaux, P., Scholl, M.: A performance evaluation of spatial join processing
strategies, pp. 286–307 (1999)

26. Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for predicted trajectories. In:
Proc. of ACM Management of Data (SIGMOD), pp. 635–646 (2004)

27. Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. In: Proc. of ACM Management
of Data (SIGMOD), pp. 259–270 (1996)

28. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S.: Query indexing and ve-
locity constrained indexing: Scalable techniques for continuous queries on moving objects.
IEEE Trans. Comput. 51(10), 1124–1140 (2002)

29. Saltenis, S., Jensen, C.S.: Indexing of moving objects for location-based services. In: Proc.
of International Conference on Data Engineering (ICDE), pp. 463–472 (2002)

30. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of contin-
uously moving objects. SIGMOD Record 29(2), 331–342 (2000)

31. Shan, J., Zhang, D., Salzberg, B.: On spatial-range closest-pair query. In: Hadzilacos, T.,
Manolopoulos, Y., Roddick, J.F., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp.
252–269. Springer, Heidelberg (2003)

32. Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method
for predictive queries. In: Proc. of Very Large Data Bases (VLDB), pp. 790–801 (2003)

33. Xiong, X., Mokbel, M., Aref, W.: Sea-cnn: Scalable processing of continuous k-nearest
neighbor queries in spatio-temporal databases. In: Proc. of International Conference on Data
Engineering (ICDE), pp. 643–654 (2005)

34. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects.
In: Proc. of International Conference on Data Engineering (ICDE), pp. 631–642 (2005)

35. Zhang, D., Tsotras, V.J., Gunopulos, D.: Efficient aggregation over objects with extent. In:
Proc. of ACM Symposium on Principles of Database Systems (PODS), pp. 121–132 (2002)

Data Analysis and Integration

Data-Centric Visual Sensor

Networks for 3D Sensing

Mert Akdere, Uğur Çetintemel, Daniel Crispell, John Jannotti,
Jie Mao, and Gabriel Taubin

Brown University, Providence RI 02912, USA

Abstract. Visual Sensor Networks (VSNs) represent a qualitative leap
in functionality over existing sensornets. With high data rates and precise
calibration requirements, VSNs present challenges not faced by today’s
sensornets. The power and bandwidth required to transmit video data
from hundreds or thousands of cameras to a central location for process-
ing would be enormous.

A network of smart cameras should process video data in real time,
extracting features and three-dimensional geometry from the raw images
of cooperating cameras. These results should be stored and processed in
the network, near their origin. New content-routing techniques can allow
cameras to find common features—critical for calibration, search, and
tracking. We describe a novel query mechanism to mediate access to
this distributed datastore, allowing high-level features to be described as
compositions in space-time of simpler features.

1 Introduction

We propose an architecture for the construction and use of Visual Sensor Net-
works (VSNs). VSNs will handle much richer data than today’s simpler data
collection sensornets. Cameras will perform local image processing, and then
cooperate to perform higher-level tasks, such as calibration, view combination,
object detection, and tracking.

Today, these systems are monitored by a small army of security personnel.
Smart event detection based on higher level analysis of the image data can help
alleviate this burden. Combining information from multiple cameras, space-time
trajectories of individuals can be computed, and suspicious behaviors can be
identified. Today’s multi-camera systems perform some of this integration, but
do so in a centralized fashion, requiring all cameras to stream video data to a
single server. These systems will not scale easily to the large networks that could
provide more detailed and comprehensive coverage.

Although complete centralization in untenable, information from several cam-
eras must be combined to make inferences about events occurring in the 3D
world, such as detecting and tracking individuals or vehicles. In order to do so,
the location and orientation of each camera must be determined with respect
to a single coordinate system. This is the camera calibration problem. Mobile
cameras require continuous calibration.

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 131–150, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 M. Akdere et al.

To meet the needs of future applications, smart cameras must process video
data in real-time, produce lower bit-rate summaries, communicate and share
data with neighboring cameras, and execute collaborative algorithms in a de-
centralized fashion.

1.1 Example Application

Consider how a potential VSN could be deployed and used in a busy metropoli-
tan airport. The network might include the hundreds of static cameras already
in use at such an airport today, augmented with thousands of additional static
cameras to gain greater coverage. Hundreds of mobile cameras attached to air-
port personnel and equipment may also play a role.

The VSN will provide security personnel with various ways to access the
camera network. The simplest is to ask for views of any area, from any direction.
Virtual views would be synthesized from overlapping views provided by the
camera network’s extensive coverage. Operators might choose to follow people
or objects that appear suspicious, or to construct a super-resolution view of a
traveler’s face. Moving beyond direct human control, such a network could be
programmed to draw attention to activity in a restricted area, or an activity
by unrecognized personnel. Finally, we envision the network detecting high-level
activities such as a traveler who has left his baggage unattended.

It is critical that operators have the tools available to assess the threats de-
tected by the network. For example, users should be able to follow a person or
object back in time or ask high-level questions about the past. How long has this
person been in the room? Which other people has he spoken with? Based on its
motion when carried, how heavy is his bag?

1.2 Requirements

In order to support applications of the type we envision, smart cameras must
capture and process image data in real-time, and cooperate to make that data
available to applications in a structured way.

Multi-Camera Calibration and Time Synchronization. Smart cameras must
share a common global coordinate system in order to combine information from
disparate cameras in 3D. Multi-camera geometric calibration is an active re-
search topic—current solutions are complex, involving cumbersome procedures
to overcome the unavoidable partial occlusions, and are based on centralized
computation, usually requiring factorization of very large matrices [1,2]. The
most common approach is based on structure from motion algorithms, in which
the pose of all cameras and the location of feature points in 3D are simultane-
ously estimated. VSNs, on the other hand, require a new robust solution based
on distributed algorithms. Furthermore, VSNs with dynamic nodes require new,
incremental approaches. Photometric calibration is also necessary to account
for inevitable differences in sensitivity to light and color between any two image

Data-Centric Visual Sensor Networks for 3D Sensing 133

sensors. Finally, VSNs must compensate for the lack of precise time synchroniza-
tion at the frame level.

Virtual Views. Virtual views are images created by integrating visual data from
several cameras to simulate the view of a virtual camera where none exists. These
views are generated by interpolating sample values from the light field [3,4], an
abstraction that represents the mapping of 3D rays to colors. In a VSN the
individual images that constitute the light field samples are best stored in a
distributed fashion near the smart cameras where they are observed. An image-
based routing protocol efficiently routes virtual view requests to the appropriate
smart cameras and composes their individual contributions within the network
to minimize network traffic.

Virtual views may also be specified in resolution or time, leading to virtual
video streams. By combining results from several overlapping cameras, a vir-
tual camera of greater frame-rate or resolution may be simulated. Generating
video streams consisting of frames defined by similar parameters can be less
taxing since the image-based routing mechanism may cache recent decisions. Of
particular interest is a virtual video stream that follows a chosen target.

Detection and Tracking. In order to track moving objects, the objects must be seg-
mented from their background. This operation requires a continually maintained
model of the background. Once foreground objects are segmented out of the back-
ground, noise removal and connectivity analysis defines blobs. Tracking 2D blobs
over time requires a significant amount of computation at the smart camera level,
but reporting their trajectories requires very little communication. Tracking in 3D
requires establishing correspondences between blobs detected in separate smart
cameras, requiring fine-grained calibration and collaborative processing.

Establishing correspondences between large blobs detected in different images
usually reduces to feature detection and matching [5,6]. Features are small blobs
which are likely to have a similar appearance in a different image. Features might
correspond to corners of buildings, or facial features of people. In general, the
feature data interchanged between cameras is not large, but the complexity of
feature matching is in principle quadratic in the number of cameras.

Compression. Transmitting high resolution images and high frame-rate video
requires a significant amount of bandwidth, and as a result, consumes a signif-
icant amount of power. However, multiple cameras capturing multiple views of
the same scene produce images and video with significant redundancies. Trans-
mitting this redundant information is a wasteful allocation of the most precious
resource of battery operated wireless sensor networks. One approach to remove
the redundant information is to reconstruct the 3D structure of the world and
transmit a 3D video stream, which can later rendered from an arbitrary point of
view. Also, surveillance applications do not require high resolution everywhere
in the field of view of the cameras, but just around the detected objects. Image
and video compression schemes that interact with object detection algorithms
have the potential to reduce the bandwidth utilization significantly.

134 M. Akdere et al.

1.3 Challenges and Contributions

The requirements of a VSN go beyond the techniques developed for existing
sensornets for two reasons. First, the raw data is extremely bandwidth intensive.
Few sensor systems tackle this challenge. Those that do focus on data types that
can be compressed in isolation by, for example, Fourier transform. Second, the
image data is difficult to aggregate. Existing systems build collection trees in
which aggregation reduces the size of acquired data at join points.

In order to aggregate image data, extensive communication must take place
first. Nearby cameras must share image features in order to establish correspon-
dences that create a common coordinate system. Even with aggregation, we ex-
pect that in-network storage will be critical to reducing bandwidth requirements.
With in-network storage comes challenges in routing and distributed query pro-
cessing. Our contributions lie in a scheme for storage and processing of data in
the VSN, and a high-level data access mechanism for operating on that data.

3D Data-Centric Storage, Routing, and Processing. We introduce data-directed
localization to dynamically calibrate without specialized hardware. Nodes will
dynamically build ever larger Geographic Hash Tables (GHTs) in which the
nodes share a common reference frame. GHTs allow for distributed feature
matching and feature matching in smaller GHTs is used to bootstrap local-
ization.

We also introduce data-centric processing (DCP), which places processing
elements in the network, located where the data they process will be stored in
the GHT. These processing elements operate on data as it becomes available,
inserting new, higher-level items into the datastore. Further processing elements
may continue this process to produce ever more complex observations.

VSNs must support queries that seek image data for a given object from a
given direction. To support these queries that do not map easily to a hash-based
content routing scheme, we have developed Image Based Routing. IBR uses a
binmesh to succinctly represents the views of many cameras in a single summary.
Query routing follows the binmeshes down the routing tree toward cameras that
observe the target object.

Space-Time Database Abstraction. Our work is intended to simplify the devel-
opment of 3D sensornet applications in two ways. First, we use a a space-time
“cube” abstraction for declarative access to the data available in the sensornet.
This abstraction hides the raw data acquired by the cameras, providing a form
of physical data independence. Applications will “pull” data using SQL-style
declarative queries posed on top of the cube abstraction. Second, we rely on
a predicate language for specifying space-time feature patterns for search and
tracking of complex objects and events easily.

Three-Dimensional Hardware. We advocate stereo smart cameras—devices that
will include two imaging sensors. The second image sensor adds little to the cost
or complexity of the design, but enables significant 3D sensing functionality as
well as a reduction in bandwidth utilization by leveraging the 3D structure of
the data.

Data-Centric Visual Sensor Networks for 3D Sensing 135

2 System Model

In comparison to existing sensornet approaches, our approach concentrates heav-
ily on in-network processing and storage. Existing systems generally use two
techniques: push computation all the way to the sensors (i.e., avoid repeating
redundant observations), or thin data by aggregation along a collection tree
(i.e., by averaging reading). Our techniques are more cooperative, and less hi-
erarchal. The nodes of VSNs must share the data collected in early stages to
enable later staged. Calibration information must be shared to enable feature
detection and tracking. Features (and their importance) must be shared in order
to guide compression. Collection along a tree is insufficient. Our basic system
model is illustrated in Figure 2.

1. “Interesting” data is identified using complex query and event specifications
over a space-time database (Sect. 5).

2. Queries and event specifications on application-level features (e.g., a mov-
ing person) are translated into an execution plan. The constituent feature-
oriented query operators are deployed to allow data centric processing.

3. Image features are extracted locally at each camera. They are then propa-
gated in a neighborhood, using a GHT-based model, to perform localization
and calibration in a distributed, collaborative fashion. Furthermore, features
are composed to form higher-level features using the data centric execution
plan.

4. Raw camera data is acquired, compressed, and stored locally (not necessarily
on the source camera). The compression is enhanced because of calibration
and feature detection as image redundancies and unimportant data are elim-
inated. Most sensor networks seek only to produce output for external con-
sumption. VSN nodes must share their computation (here, calibration data
and features) in order to function more efficiently (here, compress better).

5. Camera data is retrieved either as direct output from queries, or in a raw
form, but identified by the queries (e.g., “here is the trajectory of the car
you asked about” or “here is the face of the person who left his bag in the
atrium”). To meet potential resource constraints, raw data is compressed

2. Feature-oriented
queries & event specs

5. Raw video &
image requests

3. Collaborative in-network
feature extraction, storage,
and matching (GHT-based)

4. Raw data storage & retrieval
compressed (Image-tree based)

features
raw data

6. Archival storage
(low resolution)

UI
1. Time-space
database
abstraction

Fig. 1. High level Visual Sensor Network Model

136 M. Akdere et al.

such that interesting features are kept at a higher resolution at the expense
of other features.

6. For applications that require it, all data is extracted in compressed, low-
resolution format and archived for forensic/historical analysis and legal com-
pliance. Network capacity will limit the fidelity of this data, but calibration
and feature knowledge will greatly improve upon the fidelity that might be
obtained by individual video streams from each camera.

3 Related Work

Visual Sensor Networks operate at the intersection of many fields, including
image processing, traditional wireless networking, and distributed data
management.

3.1 Centralized Image Processing

Most existing multi-camera systems are centralized, with all cameras streaming
video to a central server where the data is analyzed and visualized [7]. Most early
systems focused on the data management benefits resulting from the transition
from analog to digital and use the networking infrastructure only as a transport
layer [7]. They do no collaborative processing [1,2]. These approaches do not scale
to systems with large numbers of video sensors. To address scalability, most of
the data intensive processing must be performed at the source, with low-bitrate,
highly compressed descriptions of the data transmitted off node. As described
above, collaborative processing may result in higher levels of data compression
and additional savings in power and bandwidth utilization.

3.2 Routing in Sensornets

A wide variety of protocols have been developed for ad-hoc wireless routing
[8,9,10]. These protocols attempt to produce a traditional network-layer, allow-
ing hop-by-hop communication between named end-points. As such, they are
not appropriate for the needs of sensornets in which node identity is rarely
important.

Instead, specialized protocols have been developed with sensornets in mind.
Trickle [11] supports the dissemination of code to a sensornet while minimizing
communication costs. Data Centric Storage, in the form of a Geographic Hash
Tables [12] (GHTs), has been proposed to allow the storage and retrieval of
named data items within the network. A GHT stores a data item by hashing
its name to a geographic coordinate and then storing the item (or a pointer) at
the node closest to that coordinate. A modified version of GPSR [13] is used to
route the item to the nearby node and several replicas. In this work, we extend
GHTs in a number of ways adding new support for features that are important
to processing data in-network.

Data-Centric Visual Sensor Networks for 3D Sensing 137

3.3 Abstractions for Wireless Sensornets

High-level interfaces for application development in sensor networks have re-
ceived significant recent attention. Most work in this direction focused on basic
operating system and communication support [14], neighborhood and abstract
regions [15,16], data-centric event dissemination [17,18], and multi-resolution
data storage [19].

Closest to our work are those that take a database-centric approach to sensor
network data access, such as TinyDB [20] and Cougar [21]. Recent work [22] has
addressed space-time queries in sensornets. These systems focus on aggregation
style queries over scalar numerical values, whereas our proposal focuses on a
richer space-time database over multi-dimensional image/video data, requiring
major changes in the way queries are expressed and executed in the network.
In addition, these systems were designed to deal with low-rate data whereas
VSNs must handle significantly higher data rates, which we address with novel
in-network computation and 3D compression.

3.4 Visual Sensor Networks

The importance of Visual Sensor Networks has been recognized in the broad Sen-
sor Networks literature [23,24], but only relatively small testbed systems, most
often wired, have been constructed [25,26]. Similar systems have been proposed
for surveillance and security applications, urban traffic control [27], and many
more for military applications (refer to [28] for various references). A number
of systems for image-based-rendering applications have been proposed including
a moderate number of cameras arranged in a regular fashion [29], which can
produce super-resolution in time [30]. All of these algorithms are centralized.
They require the frames of all cameras to reside in a single place. Attention has
not been paid to distributed algorithms applicable to the VSN framework. The
same is true for stereo and multi-camera calibration algorithms [1]. Establishing
feature correspondences can be done in a pairwise fashion, but it is prone to
errors. Robust algorithms such as RANSAC [31] have proven reliable.

4 Network Protocols and Coordination

Visual Sensor Networks have several unusual requirement as compared to tradi-
tional wireless networks, or even existing sensornets. Camera networks require
fine-grained calibration, distributed feature matching and search, and image ori-
ented routing techniques.

4.1 Data-Directed Localization and Synchronization

We are not the first to observe that sensor networks are data-oriented [32]. In
existing sensor networks, requests are routed to the sensors best able to make
a specific observation by geographic routing techniques. For example, to find

138 M. Akdere et al.

the average temperature in a room, a request is routed toward the room, and
then to all nearby sensors. In a static network, this routing might be based on
the known locations of immobile sensors. In a mobile network, dynamic routing
protocols determine the set of nodes in the target area, usually with the aid of
localization hardware such as Cricket [33] or GPS.

In visual sensor networks, the need for localization must be generalized to
include orientation and field of view. Small angular errors in orientation may be
unacceptable when a distant object’s location is estimated, or the views of two
cameras are to be integrated.

We propose data-directed localization in which smart cameras will localize
with respect to each other based on observed image data. Existing localization
techniques are not accurate enough to allow for image aggregation. Even the best
localizers have only centimeter scale accuracy which is insufficient for accurately
determining the orientation of a small sensor node.

In data-directed localization, sensors nodes will detect local features and then
cooperate to find common features observed by multiple cameras. When nodes
share multiple features, they will orient themselves in a shared coordinate sys-
tem. Additional cameras will orient themselves in this system by finding features
in the shared space. Time synchronization may be accomplished in the same way
by the shared observation of temporal events.

Local Feature Detection. Feature detection begins as a local level 2D operation.
Next, 3D features can be calculated locally from 2D features by using two image
sensors separated by a known baseline. The inter-camera search for correspon-
dences is drastically reduced by using 3D features. Sublinear geometric matching
techniques exists for spatial configurations of small groups of features in 3D [34].
These advantages motivate the use of 3D features to reduce bandwidth and
power utilization and explain why we advocate the use of smart cameras with
two image sensors.

Distributed Feature Matching. Distributed feature matching can be built on
top of the idea of a Geographic Hash Table [12]. After detecting local features,
each camera using geometric (not geographic) hashing [34], to bin them into
similar categories. Once categorized, these features are inserted into the GHT,
keyed by category. Similar features will therefore be placed at the same location.
Prospective matches can be determined at that location, and the nodes with
shared features can be notified, allowing them to directly confirm the match and
calculate their relative transformation matrix.

Unfortunately, GHTs rely on a preexisting localization scheme to enable ge-
ographic forwarding. In order to forward objects to their hashed locations, the
nodes must know their own locations and the locations of their neighbors. But
we intend to use feature matching in order to determine node locations!

Bootstrapping GHTs. We address this difficulty by bootstrapping localization in
small GHTs and extending GHTs to allow merges. Nodes will first organize in
small GHTs in which features may be advertised by scoped flooding over n hops.
Any two nodes that are within n hops of one another and share features will

Data-Centric Visual Sensor Networks for 3D Sensing 139

��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
����
����
����

����
����
����
����

������������

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����

A

C

H

I

E

G

D

B

J

K

L

M
N

O

P

Q

R

h(g(X))

h(g(X))

h(g(X))

X

Fig. 2. The feature X is observed by the two distant camera nodes. The feature is cat-
egorized through a geometric hash function, g(), and then a storage location is selected
with a geographic hash, h(). Each camera routes the feature toward the designated
location, where the closest node, N, stores the feature, detects matches, and informs
the observers.

detect their overlap and orient themselves in a mutually agreed upon coordinate
system. When nodes in separate GHTs detect overlap, the GHTs merge using
a single coordinate system. Previous sensornets are incapable of bootstrapping
localization in this way because they do not sense distant features in sufficient
detail to determine precise relative positions.

In order to merge adjacent GHTs into a single unified coordinate space, shared
features must be discovered. However, these features may be shared among nodes
that are too far from each other to find each other with scoped broadcast. How-
ever, now that small GHTs have been established, they can be used to find more
distant matches. A GHT member may be in radio contact with nodes in another
GHT. Border nodes from one GHT may place features into the adjacent GHT
with knowing the relative transform between the GHTs. Since the GHT will
now contain its own features and the features of the adjacent GHT, matches can
occur between members of both GHTs.

Feature matching is a useful primitive for tasks beyond localization. To im-
plement tracking, adjacent cameras must realize they are observing the same
object. To generate virtual views, multiple views of the same object must be ag-
gregated. Further, we expect most searches in a three dimensional object space
to be example based. Such searches can be viewed as feature matching between
an abstract target and features detected in the environment. We turn to the
task of these general searches in the next section, using feature matching as an
important primitive.

We have developed a novel auto-calibration algorithm to estimate the relative
position and orientation of several camera pods, each consisting of four rigidly
mounted network cameras. A processing engine simulated in a computer cluster
converted each pod into a multi-sensor smart camera. In addition, basic 3D track-
ing was demonstrated using the estimated camera parameters. Figure 3 shows

140 M. Akdere et al.

Fig. 3. Preliminary results using proposed 3D feature matching approach: (A) Camera
pod; only two of the four cameras used in the calibration algorithm; (B) Experimental
setup with three camera pods; (C) features extracted in each image independently;
(D) 2D short baseline feature matching within each camera pod results in 3D fea-
tures; (E) 3D feature matching between camera pods reduces matching complexity;
(F) calibration results.

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 G

ro
up

s

Number of Features

Convergence

1-hop
2-hop

Lighthouse
Flooding

 0

 5

 10

 15

 20

 100 200 300 400 500 600 700 800 900 1000

T
ra

ff
ic

 in
 M

B

Number of Features

Network Utilization

Flooding
2-hop

Lighthouse
1-hop

Fig. 4. Simulation results for distributed matching using incrementally built GHTs
shows that the GHT scheme exhibits convergence performance comparable to com-
plete feature flooding, but uses little more bandwidth than a simple 2-hop feature
propagation protocol. In both graphs, low numbers are better. On the left, they reflect
convergence into fewer individual coordinate systems. On the right, the reflect lower
network utilization

the pods mounted in the laboratory, and illustrates the steps of the algorithms.
Each pod performed small baseline feature matching and stereo reconstruction
to construct 3D features. Next, these 3D features were matched between pods.
Using a minimum of three correspondences, the pods calculate the rotation and
translation necessary to bring themselves into a common reference frame.

In parallel to this exploration of a centralized stereo matching technique,
we have simulated the performance of a distributed matching protocol, Light-
house [35]. Lighthouse attempts to converge an uncalibrated camera network
into a single coordinate space using the GHT matching techniques described
above. These simulations show that Lighthouse finds distributed matches nearly
as well as complete feature exchanges, yet uses less bandwidth than exchanges
among 2-hop neighbors. In these simulations of 100 camera networks, complete
feature exchange uses approximately five times the bandwidth of Lighthouse.
This advantage grows as the network increases in size.

Data-Centric Visual Sensor Networks for 3D Sensing 141

4.2 Feature-Oriented Search and Computation

Visual sensor networks will gather vast amounts of data that must be searched,
processed, and acquired by users and applications. GHTs were proposed in tradi-
tional sensornets as a compromise between moving all acquired data to a central
site, and leaving data at its point of acquisition. Centralizing data requires enor-
mous network capacity and power for transmission, regardless of whether the
data is ever queried. Leaving data unindexed at the acquisition site is costly
because queries must conduct exhaustive search to locate a data item.

The hash function of a GHT can be thought of as an index on arbitrary data.
If data is stored using names that correspond to the needs of queries, retrieval
and processing are efficient. For example, if cameras detect and measure the
heights of people they observe, they might store these observations (or pointers
to them) keyed by those heights, binned in one inch increments. A query can
find all individuals greater than six feet tall by examining the hash locations
associated with each potential observation above six feet. Sect. 5 presents a
relational database abstraction to sensor data, and just as in an RDBMS, we
will support arbitrary indexes by storing data according to hash functions that
correspond to expected queries.

Data indexed in this way is first hashed into a category, or bin. Next the GHT
applies a hash function to select a location for the category. Significant query
performance may be lost due to the random locations selected, even for keys
that will be queried sequentially. For example, suppose that an application seeks
observations of faces in a room—a specific geographic area. These observations
might have been inserted into the GHT with keys like, 〈face, x, y〉, where x
and y are the geographic coordinates of the observation, rounded to categorize
the observations. The query must lookup each possible value for x and y for
coordinates in the room. Hashing each such key results in the storage of these
observations arbitrarily throughout the sensornet.

Locality Preserving Hints. We propose widening the interface to the GHT’s inser-
tion operation to include an optional coordinate “hint.” The GHT hash function
will use the supplied coordinate to directly set the high bits of the coordinate at
which the data will be stored. In the common case of observations with spatial
locality that will be accessed by location, geographic hints will preserve spatial
locality and allow queries that access the observations sequentially to operate at
a small set of nearby locations. In the example above, observations with similar
x and y coordinates will be stored near each other.

Generalizing, we will also allow hints containing a small number of arbitrary
scalar values. By taking these values into account during hashing, a set of linear
values can be hashed along a line in geographic space. Multiple values can be
hashed to a two dimensional patch. Suppose facial observations of faces are
stored with hints describing the distance between eyes and the width of mouth.
The hinted hash of these observations will map them to a single quadrilateral in
the sensornet. Queries that must process a range of values will exhibit spacial
locality as they retrieve and process observations in the network.

142 M. Akdere et al.

Feature Aggregation with Data-Centric Processing. The detection of high-level
features is generally accomplished by detecting simpler features in a partic-
ular arrangement. Primitive feature detectors place a record of their finding
in the GHT by inserting the feature under a well-defined name, such as eye.
To detect higher level features, a second level of feature detectors can be lo-
cated on the nodes that will receive the individual subfeatures. For example, at
hash(mouth), a face detector notes the location of the mouth and inserts a partial
face observation in the GHT. A similar aggregator creates partial observations
for eyes and noses. These observations are all inserted under the well-known
name partial-face at the same location. When enough observations agree, a
face has been detected, and the composite event is inserted at hash(face). We
consider these operators, placed in the GHT to process values at their insertion
point, to be the natural computational analogue to data-centric routing and
storage—data-centric processing.

Scoped GHTs. The GHT abstraction provides precise insertion and lookup op-
erations. That is, if any node inserts data under a given key, a lookup from any
other node will find the given item. However, feature matching and aggregation
do not require this strong guarantee. There is no need for partial-face obser-
vations associated with eyes observed hundreds of meters apart to be stored at
a single point. We propose Scoped GHTs that perform insertions nearby in the
case that the observation need not be accessible from afar.

We will explore a geographic hashing scheme, inspired by our previous work
on GLS [10], that enable this relaxation. We will divide the world with a fixed
sized grid, and store features only in those squares where accessibility is needed.
If the feature is used only in queries that require it to be observed within two
feet of another feature, then the feature is inserted only in those squares that are
within two feet of the feature’s location. Scoped insertions require constant power
and bandwidth, dependent on square size, rather than the O(

√
(n)) power and

bandwidth required to traverse a sensor field of n nodes to a random location.
Figure 5 shows how DCP, using scoped insertions is improved. On the left,

observation are sent to a central base station in order to perform complex event
detection. On the right, features are are sent only to local base stations. On
average, features are tranmitted shorter distances, and the load is spread among
many stations. Nonetheless, all complex features are still found, since subfeatures
that may be a part of the same larger feature are collected at the same base
station.

4.3 Structured Routing and Aggregation

Until now, we have discussed techniques that allow the VSN to perform tasks,
such as calibration, feature detection, and tracking, without transmitting large
amounts of visual data. Howevere, the VSN must also return visual data effi-
ciently when requested.

Image Based Routing. A sensor network must support data directed queries
such as, “Show me the view of the Atrium, from the North.” The querier does

Data-Centric Visual Sensor Networks for 3D Sensing 143

Fig. 5. Network transmissions are plotted as “heat map.” On the left, transmission to
a centralized base station overwhelm the nearby nodes. On the right, DCP with scoped
insertions balances the load to provent hotspots.

Fig. 6. To build binmeshes, the observable geometry is divided into tiles. A faceted
hemisphere is placed on each tile. A binmesh describes the set of facets observable by
a camera or set of cameras.

not know or care which sensors are involved in answering the query. In a visual
sensor network, queries must be routed to the sensors that can observe an area,
rather than the sensors in the specific area.

We are integrating our work on Image Based Routing into our VSN frame-
work. The IBR protocol is used when a query is seeking data for a specific
location as seen from a specified direction. Image Based Routing resembles a
traditional distance-vector routing protocol with route aggregation, rather than

144 M. Akdere et al.

hash-based content routing. Image Based Routing is tree based. The leaves of the
tree pass descriptions of their fields of view to their parent. As the descriptions
work their way toward the root, nodes aggregate multiple view descriptions into
a single description that describes their own view and the views of their descen-
dants. A query for any particular view can be routed from the root by choosing
the child(ren) that has advertised a view description matching the query. Re-
sponses to the query are aggregated from partial responses as they flow back
toward the root from the various responding cameras.

View Representation. We have developed the binmesh, a datastructure which
represents the angles from which a given camera observes a given geometry. Ag-
gregating these binmeshes is, approximately, a bitwise OR. Once aggregated,
accuracy remains high. An aggregated binmesh does not represent any new im-
possible views that its constituent binmeshes did not declare. Figure 6 is neat.

5 Data Access and Querying

An important goal of our proposal is to simplify VSN application development.
To this end, we will allow users and applications to ask questions about the
network in a high-level language that specifies what data to gather from the
network without specifying how the query should be executed. The system must
adpatively plan in order to execute the query efficiently, taking into account other
simultaneous queries, and the fidelity needs that may influence compression.

5.1 Space-Time Database

Our primary abstraction is a space-time 4-dimensional view of the underlying
data, consisting of a 3-D volume (x,y,z) representing geographic space and the
fourth dimension t representing time. Conceptually, this abstraction captures
the data produced by all sensors in a sequence of frozen time frames, where
each frame is a 3-dimensional cube that provides a logical model of the world of
interest. This abstraction allows users to easily query the system based on spatial
attributes on a combination of live and historical data. This view is virtual and
not materialized. The implication is that whenever a query is asked on this view,
the execution involves accessing the base data stored in a distributed manner in
the network. Similar virtual view (but non space-time) abstractions have been
used by Cougar [21] and TinyDB [20].

Multi-Level Data Representation. Our framework is based on a two-level repre-
sentation of sensor data: The raw data layer and the view layer. The raw data
layer is the physical layer that continuously acquires and stores camera data.
The view layer is the logical layer that transforms raw sensor data into the cube
abstraction. User queries are executed on this abstraction. This layering provides
physical data independence, a key concept borrowed from traditional relational
database systems, which shields users and applications from the details of our
data-centric protocols.

Data-Centric Visual Sensor Networks for 3D Sensing 145

User queries can be one time or continuous and can be saved as named views
that can be reused once defined. This style of cascading is similar to the way
that views are cascaded in traditional database systems. In simplified terms, the
semantics of cascading of a query q and a view v is that the output resulting
from the execution of v will be fed into q. Cascading simplifies the expression
of complicated queries and allows the same underlying query to be used concur-
rently by multiple others, facilitating resource and result sharing. Furthermore,
multiple cascading queries allows for interesting cross-query optimizations (e.g.,
pushing decimation operations present in the high-level query to the underlying
query during execution).

Data Access Methods. The basic data access and querying interface will be a lin-
ear, SQL-like notation from declarative queries. Consider the following example
query:

SELECT from CUBE
WHERE location = [(50,50,50), (100, 100, 100)]
VIEWPOINT = (100, 100, 100)
WITH RESOLUTION 20 fps
SAVE AS VIEW ‘‘Atrium NE’’

This continuous query selects a volume of space specified by two corners of a
sub-cube and asks for an image stream that corresponds to the target volume as
observed from a specific viewpoint. The data are to be acquired with a temporal
resolution of 20 frames per second. If the viewpoint cannot be presented due
to lack of data, the system might offer an alternative but similar viewpoint for
which data is available. The query is saved as view “Atrium NE” as it provides
a view of the room named Atrium from the North-East direction. On top of
this view, we can define another query that returns images containing bag-like
shapes with a resolution of ten frame per second:

SELECT from ‘‘ATRIUM NE’’
WHERE object = ‘‘bag’’
RESOLUTION 10 fps

We envision moving beyong a textual language to a graphical tool to allow
incremental visualization of the sensornet data. The interface of the tool will
resemble the familiar mapping software in that it will allow users to graphically
select geographical spaces, zoom in and out, pan in different directions, as well
as provide more advanced features such as selecting arbitrary viewpoints, and
looking back in time. The operations specified through the visualizer will be
translated into queries and submitted for execution to query the sensornet.

Space-Time Feature Predicates. Any interesting VSN will require search and
detection of objects and activities (events) based on images. A user might be
interested in finding where a specific person was at a specific point in time, locat-
ing all bags of a certain color, size, and shape, or even ask to see the people that

146 M. Akdere et al.

are currently running. In general, there is a clear need for an extensible program-
ming framework that will facilitate the specification of objects and activities of
interest.

Our framework will give the users the ability to specify spatial and temporal
features on image data. We uniformly represent both objects and activities using
features. Spatial features are defined based on relationships of data over space.
For example, a head can be described using a spatial relationship among other
(lower-level) features such as eye, nose, ear, mouth, etc. Such relationships are
models that represent a feature using the relative spatial orientation of one or
more lower-level features (e.g., a nose is below the eyes and above the mouth).
Users will register predicates that evaluate both primitive features (e.g., a nose
or an eye) and composite features (e.g., head, body, person). Temporal features
will be defined in a similar manner although, in this case, one is interested in
the position of features over time. For example, the activity of “moving” can be
expressed as a specific feature changing its location over time.

Clearly spatial and temporal predicates can be intermixed to express arbi-
trarily complex objects and activities: a running person can be identified by
evaluating the spatial predicate that detects a person in a given time snapshot
and then a temporal predicate that checks whether that person is moving faster
than a given threshold. Once defined, the predicates will be sent to the network
locations where they will be evaluated with data centric processing. Defining
objects and events using feature predicates will allow us to use the feature-based
routing and matching techniques outlined in Sec. 4.1 as the uniform underlying
in-network query execution mechanism.

We have built a space-time database layer that facilitates queries over the loca-
tion and trajectory ofmoving objects.Object positions acquiredusing cameras and
Cricket nodes are stored in a centralized database and organized in multiple orders
to facilitate efficient space-time queries. This work is explores sophisticated inter-
actions with people and various artifacts in a large museum setting. This Smart
Museum project will continue to serve as a target application for our work.

Adaptive Query Execution. Once the user submits a query to the system, the
query will be translated into an execution plan. The planning phase must de-
cide, based on the query specification, which routing indexes (spatial, temporal,
feature-based, or a combination) and feature detectors to use. The query plan
will be sent to the network and executed collectively by the appropriate nodes
(as described earlier in this section) in a distributed fashion, after which results
are sent back to the user. This is a distributed query optimization problem and
is one of the main challenges that we will tackle.

Query execution must also adapt to dynamically changing workload and net-
work characteristics. Our primary tool for adaptation will be application-aware
compression where the novel compression techniques discussed earlier will be
applied to camera data selectively based on their utility to the existing queries
and the availability (or lack of) resources. The issues we will address include
how to extract utility information from the existing workload and how to use
this information to guide compression decisions.

Data-Centric Visual Sensor Networks for 3D Sensing 147

5.2 Image and Video Stream Compression

We regard 3D reconstruction as a mechanism to compress the data captured from
multiple video streams, resulting in lower power consumption. Polygon Meshes
and oriented point clouds are popular representations for 3D surfaces in com-
puter graphics. Polygon meshes are highly compressible [36,37,38,39,40,41,42,43]
, and point clouds are error resilient. In the context of VSNs a representation
with the two properties is needed. We propose a new surface representation com-
posed of time-dependent overlapping parameterized surface patches, or 3D video
streams.

3D video streams as compression of multiple 2D video streams. Traditional video
standards such as MPEG-4 support the transmission of a dynamic 3D scene as a
set of multiplexed video streams, one per camera. As the number of video streams
grows under constant channel capacity, the overall image quality decreases. We
advocate the generation of a compressed representation of all possible views,
exploiting the correlation between multiple views of the same scene. Desired
views are rendered at the terminal. More computation may be required both at
the encoder and decoder, but overall distortion will be minimized, and power
consumption due to data transfer will be significantly reduced.

Adaptive 3D stream and Video Sampling. Figure 7 illustrates the way our com-
pression may leverage feature knowledge obtained by the VSN. This will extend
the work of Balmelli, Taubin, and Bernardini [44] from static textured polygon
meshes to 3D video streams. A smart camera captures a high resolution video
stream. In cooperation with other cameras, queries detect and track objects, such
as faces or suitcases, resulting in a monochromatic alpha channel which assigns
importance values to different pixels. The smooth alpha channel can be down-
sampled quite aggressively. Each of these decimated frames is used to generate
a 2D warping function used to resample the frames of the source video stream
adaptively on a pixel grid of the same dimensions as the downsampled alpha
channel. The result is transmitted as an RGBA video stream of low resolution
and normal frame rate, which can be further compressed using standard meth-
ods. These low resolution images preserve the details of the regions of interest
at the captured resolution. In the decoder, the inverse warping function is com-
puted from the alpha channel, and the unwarped image is recovered at the full

Fig. 7. Video Compression for Surveillance will use adaptive sampling and downsam-
pling

148 M. Akdere et al.

resolution in the important regions. Again, by sharing the results of prior stages
(feature detection) greater efficiencies can be obtained later (in compression).

6 Conclusions

VSNs represent an opportunity and challenges. Smart cameras offer far richer
capabilities than simpler sensors, but require far greater effort to coordinate
effectively. We have outlined a vision for using camera networks effectively, from
the initial problem of self-calibration, through feature and image retrieval, to an
expressive and efficient query language for application interaction.

References

1. Svoboda, T., Martinec, D., Pajdla, T.: A convenient multi-camera self-calibration
for virtual environments. PRESENCE: Teleoperators and Virtual Environ-
ments 14(4) (August 2005)

2. Wang, F.Y.: An Efficient Coordinate Frame Calibration Method for 3-D Mea-
surement by Multiple Camera Systems. IEEE Transactions on Systems, Man, and
Cybernetics – Part C: Applications and Reviews 35(4), 453–464 (2005)

3. McMillan, L., Bishop, G.: Plenoptic Modeling: An Image Based Rendering System.
In: Siggraph 1995. Conference Proceedings, pp. 39–46 (1995)

4. Levoy, M.: Light Field Rendering. In: Siggraph 1996. Conference Proceedings, pp.
31–42 (1996)

5. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630
(2005)

6. Lowe, D.: Distinctive image features from scale invariant features. International
Journal of Computer Vision 60(2), 91–110 (2004)

7. Valera, M., Velastin, S.: Intelligent distributed surveillance systems: a review. IEE
Proceedings on Vision, Image, and Signal Processing 152(2), 192–204 (2005)

8. Perkins, C., Royer, E., Das, S.R.: Ad hoc On demand Distance Vector (AODV)
routing. Internet draft (work in progress), Internet Engineering Task Force (Octo-
ber 1999)

9. Johnson, D.B.: Routing in ad hoc networks of mobile hosts. In: Proc. of the IEEE
Workshop on Mobile Computing Systems and Applications, pp. 158–163 (Decem-
ber 1994)

10. Li, J., Jannotti, J., Couto, D.S.J.D., Karger, D.R., Morris, R.: A scalable location
service for geographic ad hoc routing. In: Proc. ACM/IEEE MobiCom (August
2000)

11. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensor networks. In: NSDI 2004
(March 2004)

12. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.:
GHT: A geographic hash table for data-centric storage in sensornets. In: Proc. of
the 1st ACM International Workshop on Wireless Sensor Networks and Applica-
tions (WSNA) (September 2002)

13. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: Proc. ACM/IEEE MobiCom, pp. 243–254 (August 2000)

Data-Centric Visual Sensor Networks for 3D Sensing 149

14. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E.,
Culler, D.: The emergence of networking abstractions and techniques in TinyOS.
In: NSDI 2004 (2004)

15. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In:
NSDI 2004 (2004)

16. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: MobiSys 2004 (2004)

17. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In: Proceedings of the Sixth
Annual International Conference on Mobile Computing and Networking (Mobi-
COM 2000), Boston, Massachussetts (2000)

18. Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., Gane-
san, D.: Building efficient wireless sensor networks with low-level naming. In: Pro-
ceedings of the Symposium on Operating Systems Principles, Lake Louise, Banff,
Canada (2001)

19. Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., Heidemann, J.: An eval-
uation of multi-resolution storage for sensor networks. In: Proceedings of the ACM
SenSys Conference (2003)

20. Madden, S., Franklin, M.J., Hellerstein, J., Hong, W.: TAG: A tiny aggregation
service for ad-hoc sensor networks. In: Proceedings of the 5th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 2002), Boston,
Massachusetts (December 2002)

21. Yao, Y., Gehrke, J.: Query processing in sensor networks. In: Proc. of the First
Biennial Conference on Innovative Data Systems Research (CIDR 2003) (January
2003)

22. Coman, A., Nascimento, M., Sander, J.: A framework for spatio-temporal query
processing over wireless sensor networks. In: 2nd International VLDB Workshop
on Data Management for Sensor Networks (2005)

23. Obraczka, K., Manduchi, R., Garcia-Luna-Aveces, J.: Managing the information
flow in visual sensor networks. In: Proceedings of the 5th. International Symposium
on Wireless Personal Multimedia Communications (October 2002)

24. Wolf, W., Ozer, B., Lv, T.: Smart cameras for embedded systems. IEEE Com-
puter 35(9), 48–53 (2002)

25. Trivedi, M., Mikic, I., Bhonsle, S.: Active Camera Networks and Semantic Event
Databases for Intelligent Environments. In: Proceedings of the IEEE Workshop
on Human Modeling, Analysis and Synthesis, Hilton Head, South Carolina (June
2000)

26. Hampapur, A., Brown, L., Connell, J., Pankanti, S., Senior, A., Y-L, T.: Smart
surveillance: Applications, technologies and implications. In: Proceedings of the
IEEE Pacific-Rim Conference On Multimedia, Singapore (December 2003)

27. Esteve, M., Palau, C., Catarci, T.: A Flexible Video Streaming System for Urban
Traffic Control. IEEE Multimedia 13(1), 78–83 (2006)

28. ACM 2nd International Workshop on Video Surveillance & Sensor Networks

29. Wilburn, B., Smulski, M., Kelin Lee, H.H., Horowitz, M.: The light field video cam-
era. In: SPIE Electronic Imaging 2002, Media Processors, Conference Proceedings
(2002)

30. Wilburn, B., Joshi, N., Vaish, V., Levoy, M., Horowitz, M.: High speed videography
using a dense camera array. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2004), pp. 294–301 (2004)

150 M. Akdere et al.

31. Lacey, A.J., Pinitkarn, N., Thacker, N.A.: An Evaluation of the Performance
of RANSAC Algorithms for Stereo Camera Calibration. In: Proceedings of The
Eleventh British Machine Vision Conference (September 2000)

32. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., Estrin, D.: Data-centric stor-
age in sensornets. In: Proc. 1st Workshop on Hot Topics in Networking (HotNets-I)
(October 2002)

33. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The Cricket location-support
system. In: Proc. ACM/IEEE MobiCom (August 2000)

34. Wolfson, H.J., Rigoutsos, I.: Geometric hashing: An overview. In: IEEE Computa-
tional Science and Engineering, pp. 10–21 (October-December 1997)

35. Jannotti, J., Mao, J.: Distributed calibration of smart cameras. In: Proc. Workshop
on Distributed Smart Cameras (DSC 2006) (2006)

36. Guéziec, A., Taubin, G., Horn, B., Lazarus, F.: A framework for streaming ge-
ometry in vrml. IEEE Computer Graphics and Applications, 68–78 (March/April
1999)

37. Guéziec, A., Taubin, G., Lazarus, F., Horn, W.: Converting sets of polygons to
manifold surfaces by cutting and stitching. In: IEEE Visualization 1998 Conference
Proceedings, pp. 383–390 (October 1998)

38. Guéziec, A., Bossen, F., Taubin, G., Silva, C.: Efficient compression of non-manifold
meshes. In: IEEE Visualization 1999 Conference Proceedings (October 1999)

39. Guéziec, A., Taubin, G., Lazarus, F., Horn, W.: Simplicial maps for progressive
transmission of polygonal surfaces. In: VRML 1998. ACM Press, New York (1998)

40. Taubin, G.: A signal processing approach to fair surface design. In: Siggraph 1995
Conference Proceedings, pp. 351–358 (August 1995)

41. Taubin, G., Horn, W., Lazarus, F., Rossignac, J.: Geometric Coding and VRML.
Proceedings of the IEEE 86(6), 1228–1243 (1998)

42. Taubin, G., Guéziec, A., Horn, W., Lazarus, F.: Progressive forest split compres-
sion. In: Siggraph 1998 Conference Proceedings, pp. 123–132 (July 1998)

43. Taubin, G., Rossignac, J.: Geometry compression through topological surgery.
ACM Transactions on Graphics 17(2), 84–115 (1998)

44. Balmelli, L., Taubin, G., Bernardini, F.: Space-Optimized Texture Maps. Computer
Graphics Forum 21(3) (September 2002)

A Vision for Cyberinfrastructure for Coastal

Forecasting and Change Analysis

G. Agrawal, H. Ferhatosmanoglu, X. Niu,
K. Bedford, and R. Li

Ohio State University, Columbus OH 43210

Abstract. This paper gives an overview of a recently initiated
cyberinfrastructure project at The Ohio State University. This project
proposes to develop and evaluate a cyberinfrastructure component for
environmental applications. This will include developments in middle-
ware, model integration, analysis, and mining techniques, and the use
of a service model for supporting two closely related applications. These
applications will be real-time coastal nowcasting and forecasting, and
long-term coastal erosion analysis and prediction.

1 Introduction

Over the years, much work has been done on observing and modeling the en-
vironment. Many complex systems have been, or are being, built. An example
of such an effort is the Integrated Ocean Observing System (IOOS)1, which is
being built with a number of goals, including detecting and forecasting oceanic
components of climate variability, ensuring national security, among others.

Despite advances in the amount of data being collected (including larger num-
ber of sources as well as increased spatio-temporal granularity) and enhance-
ments in the techniques being developed for analyzing these datasets, we believe
that a number of challenges remain in this area:

– The current systems are very tightly coupled. There is hardly any reuse of
algorithm implementations across different systems. It is also extremely hard
to test or incorporate new analysis algorithms.

– The implementations are closely tied to the available resources.
– The existing systems cannot adapt the granularity of analysis to the resource

availability and time constraints.

The emerging trend towards (closely related) concepts of service-oriented archi-
tectures [9] and grid computing [12] can alleviate the above problems. They can
enable development of services which are not tied to specific datasets or end
applications, and implementation of applications using these services. However,
this also requires advances in grid middleware components that can support
streaming applications and data virtualization/integration.

1 http://www.ocean.us

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 151–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ocean.us

152 G. Agrawal et al.

This paper gives an overview of a recently initiated project at The Ohio State
University. This project proposes to develop and evaluate a cyberinfrastructure
component for environmental applications. This will include developments in
middleware, model integration, analysis, and mining techniques, and the use of
a service model for supporting two closely related applications. These applica-
tions will be real-time coastal nowcasting and forecasting, and long-term coastal
erosion analysis and prediction.

1.1 Overview of the System Being Built

We view the cyberinfrastructure software support for environmental applications
as comprising four layers:

– At the lowest level, we have basic grid middleware services: Globus (which
provides resource monitoring and security) and related middleware standards
and services, including Grid Data Access and Integration (DAI) standards.
This work has been developed and supported by programs like the NSF
Middleware Initiative (NMI).

– At the second level, we have three advanced data-intensive middleware ser-
vices developed at Ohio State. The particular components will be:
• GATES (Grid-based Adaptive Execution on Streams) [4]: This middle-

ware allows development of grid-based streaming applications, which can
adapt the processing granularity to meet real-time constraints. Contin-
uous sensor-based data is available for most environmental applications.
There are many situations where one needs to react on a real-time basis,
for example, when there is an oil spill in a lake.

• Data Virtualization and Wrapper Generation Middleware [39]: The goal
here is to make applications or application components independent of
the specific data formats. Our work on data virtualization allows appli-
cation to query or process a complex dataset with a simpler or abstract
view, e.g., a relational table based view. Our work on wrapper generation
allows data and tools with different formats to be integrated.

• FREERIDE-G (Framework for Rapid Implementation of Datamining
Engines in a Grid): This system allows parallel implementation of data
mining or data-intensive scientific applications that involve data in a
remote repository.

– At the third level, specific algorithms and data analysis techniques will be
implemented as grid services, i.e., they will be implemented so that they can
be accessed by different application developers, can be applied on different
data sources, and also, can be executed on a variety of resources. Using the
tools from the previous layer will help in achieving these goals. The specific
services in our implementation will be:
• Multi-model/Multi-sensor 3D mapping, where novel algorithms will be

coupled with our wrapper generation service to fuse data collected at
different times and altitudes, and with different imaging principles.

A Vision for Cyberinfrastructure for Coastal Forecasting 153

• Query planning service, where the focus will be to extract and use ap-
propriate metadata from image datasets.

• Spatio-temporal mining services, which include algorithms for both of-
fline, scalable analysis (implemented using FREERIDE-G) and
distributed streaming analysis (implemented using GATES).

– Finally, at the top-most level, we have the end applications. These will be de-
veloped using the services from previous layers. The two applications we will
target are real-time coastal forecasting/nowcasting, and long term coastal
analysis and prediction.

Overall, this project will achieve the following goals. It will demonstrate an ar-
chitecture for constructing cyberinfrastructure for environmental applications.
It will also contribute to further development of our three middleware systems,
and will apply and evaluate them for challenging real applications. New algo-
rithms will be developed for multi-sensor/multi-model data fusion, for extracting
metadata for image applications and using it for distributed query planning, and
for data mining on spatio-temporal heterogeneous datasets. Moreover, these al-
gorithms will be made available as grid services. This project will also enable
developments in the area of coastal informatics, particularly, in terms of enabling
flexibility and adaptivity in resource utilization, and in using advanced models
and analysis algorithms.

2 Advanced Middleware Systems

The characteristics of the applications in the environmental domain, as well as in
many related areas, pose many challenges for grid middleware systems. Two of
the most common problems are related to supporting real-time or near real-time
response to distributed data streams, and integrating data from a large number
of sources.

Ongoing work at The Ohio State University has been developing grid mid-
dleware components which address these problems. In this section, we describe
three systems, each of which will provide a key functionality in our proposed cy-
berinfrastructure component for environmental applications. These systems are
developed on top of existing basic middleware services, i.e. Globus and related
standards, and will enable development of more specialized services for envi-
ronmental applications, including services for multi-sensor 3D mapping of data,
distributed query processing, and mining.

The first two of these systems provide support for adaptive and resource-aware
execution on distributed streaming data, and data integration and virtualization,
respectively. The third system will enable development of scalable data mining
and data processing applications in grid environments.

2.1 GATES: A Grid-Based Middleware for Streaming Data

This section describes the motivation and the major design aspects of the GATES
(Grid-based AdapTive Execution on Streams) system that has been developed
at The Ohio State University [4].

154 G. Agrawal et al.

Motivation. Increasingly, a number of applications across a variety of science
and engineering disciplines rely on, or can potentially benefit from, analysis and
monitoring of data streams. In the stream model of processing, data arrives con-
tinuously and needs to be processed in real-time, i.e., the processing rate must
match the arrival rate. Increasing numbers of high precision data collection in-
struments and sensors that are generating data continuously, and at a high rate,
have contributed to this model of processing. The important characteristics that
apply across a number of stream-based applications are: 1) the data arrives con-
tinuously, 24 hours a day and 7 days a week, 2) the volume of data is enormous,
typically tens or hundreds of gigabytes a day, and the desired analysis could
also require large computations, 3) often, this data arrives at a distributed set
of locations, and all data cannot be communicated to a single site, and 4) it is
often not feasible to store all data for processing at a later time, thereby, requir-
ing analysis in real-time; alternatively, timely response requires that the data
be processed in real-time or near real-time. An environmental application like
coastal forecasting and nowcasting clearly involves streaming data and the need
for real-time response. However, in the past, grid technologies have not been
used for such applications.

GATES system is based on need for supporting flexible and adaptive process-
ing of distributed data streams using grid technologies and standards.

Key Goals. There are three main goals behind the design of the GATES system.

1. Enable the application to achieve the best accuracy, while maintaining the
real-time constraint. For this, the middleware allows the application develop-
ers to expose one or more adaptation parameters at each stage. An adaptation
parameter is a tunable parameter whose value can be modified to increase
the processing rate, and in most cases, reduce the accuracy of the process-
ing. Examples of such adaptation parameters are, rate of sampling, i.e., what
fraction of data-items are actually processed, and size of summary structure
at an intermediate stage, which means how much information is retained
after a processing stage. The middleware automatically adjusts the values
of these parameters to meet the real-time constraint on processing. This is
achieved through a self-adaptation algorithm.

2. Support distributed processing of one or more data streams, by facilitating
applications that comprise a set of stages. For analyzing more than one data
stream, at least two stages are required. Each stage accepts data from one
or more input streams and outputs zero or more streams. The first stage
is applied near sources of individual streams, and the second stage is used
for computing the final results. However, based upon the number and types
of streams and the available resources, more than two steps could also be
required. All intermediate stages take one or more intermediate streams as
input and produce one or more output streams. GATES’s APIs are designed
to facilitate specification of such stages.

3. Enable easy deployment of the application. This is done by supporting a
Launcher and a Deployer. The system is responsible for initiating the differ-
ent stages of the computation at different resources. The system also allows

A Vision for Cyberinfrastructure for Coastal Forecasting 155

the use of existing grid infrastructure. Particularly, the current implemen-
tation is built on top of the Open Grid Services Infrastructure (OGSI) [11],
and uses its reference implementation, Globus Toolkit (GT) 3.0.

GATES is also designed to execute applications on heterogeneous resources.
The only requirements for executing an application are: 1) support for a Java
Virtual Machine (JVM), as the applications are written in Java, 2) availability
of GT 3.0, and 3) a web server that supports the user application repository.
Thus, the applications are independent of processors and operating systems on
which they are executed. Further details of how our middleware uses GT 3.0
are documented in an earlier publication [4]. In the future, we expect to further
integrate GATES with the WS-Resource Framework and Globus 4.0.

System Architecture and Design. The overall system architecture is shown
in Figure 1. The system distinguishes between an application developer and an
application user. An application developer is responsible for dividing an ap-
plication into stages, choosing adjustment parameters, and implementing the
processing at each stage. Moreover, the developer writes an XML file, speci-
fying the initial configuration information of an application. Such information
includes the number of stages, locations of data sources and destination, and
where the stages’ codes are. After submitting the codes to application reposito-
ries, the application developer informs an application user of the URL link to
the initial configuration file. An application user is only responsible for starting
and stopping an application.

The above design simplifies the task of application developers and users, as
they are not responsible for allocating grid resources and initiating the different
stages at different resources. To support convenient deployment and execution,
the Launcher, the Deployer and the Grid Resource Manager are used. The pro-
cedure for launching an application is as follows. To start an application, the

Launcher

Application Developer Application User

Deployer

 the place
where the configuration file is

Fetch the
initial configuration info.

Grid
Resource
 manager

Retrieve the codes

Code
for

stage 1

GATES
Grid Service

GATES
Grid Service

Code
for

stage 2

GATES
Grid Service

Code
for

stage N

Application Repository
Codes for stages

Codes for stages
Codes for stages

 Web Server
 Configuration info.

GATES
Grid Service

GATES
Grid Service

Data
 Streams Data Streams

Initial
configurations

Deployment
configurations

Fig. 1. Overall System Architecture for GATES

156 G. Agrawal et al.

user simply passes the XML file’s URL link to the Launcher. The Launcher is
in charge of fetching the XML file and passing it to the Deployer. The Deployer
is responsible for the deployment. Specifically, it 1) analyzes the initial config-
uration information sent by the Launcher, 2) consults with the Grid Resource
Manager to get a complete deployment configuration (defined in the next sec-
tion), 3) initiates instances of GATES grid services according to the deployment
configuration, 4) retrieves the stage codes from the application repositories, and
5) uploads the stage specific codes to every instance, thereby customizing it.

After the Deployer completes the deployment, the instances of the GATES
grid services start to make network connections with each other and execute
the stage functionalities. The GATES grid service is an OGSA Grid service [10]
that implements the self-adaptation algorithm and is able to contain and execute
user-specified codes.

2.2 Bridging Data Format Differences: Data Virtualization and
Automatic Wrapper Generation Approach

One of the major challenges in developing applications that process data from a
large number of sensors (and other sources) is that this data exists in a variety of
low-level formats. This has (at least) two consequences. First, even when process-
ing data from a single source that produces data in a complex and low-level format,
an application developer needs to put in a significant effort in understanding the
layout of data. The specification of the processing also becomes more involved, and
closely dependent on the format of the data. Second, integration and processing
of data from a large number of sources becomes even harder. Advances in sen-
sor technologies also result in new data sources, and/or a change in format of the
data being produced by an existing source. Current distributed data processing
applications are not very well suited for adjusting to such changes.

Data integration is a well-studied problem in computer science, and a number
of approaches have been developed. One common approach is to use wrapper
programs, which can transform the data from one source into a format that is
understandable by another. OPeNDAP [5], a system widely used in environmen-
tal and oceanographic applications, provides data virtualization through a data
access protocol and data representation. However, this system requires that the
datasets be converted into a specific internal representation. Moreover, integrat-
ing a new data source or client requires significant programming effort.

At Ohio State, we have proposed the notion of automatic data virtualiza-
tion [27,36] and automatic wrapper generation [39], and have been developing
grid middleware to support these. In both these approaches, a declarative de-
scription of a data format (a layout descriptor) is stored as part of the metadata
associated with the data. In the data virtualization approach, an application is
developed assuming a high-level or virtual view of the dataset, such as a rela-
tional table or an XML dataset. Using the layout descriptor, a middleware layer
executes the application on the low-level dataset. In the automatic wrapper gen-
eration approach, a wrapper program is generated automatically using layout
descriptors corresponding to both the source and the target formats.

A Vision for Cyberinfrastructure for Coastal Forecasting 157

WRAPINFO

Wrapper Generation Grid Service

Application Analyzer

 Data Reader Data Writer

Synchronizer

Layout Parser

 Representation
Internal Mapping

Mapping Parser

Schema ParserDTD Parser

Schema Descriptors

Mapping Generator

Layout Descriptors

Internal Data Entry
 Representation

Schema Mapping

Source Datasets Target Datasets

Input/Output

System Module

System Boundary

Fig. 2. Overview of the Automatic Wrapper Generation System

These approaches offer many advantages over the existing systems. New data
sources and changes to existing data sources can be accommodated by just writ-
ing or modifying the layout descriptor associated with that source. Similarly,
new analysis programs or updates to these programs can be easily incorporated
as part of an application. Furthermore, both data sources and analysis tools
can be discovered on-the-fly, and integrated with other sources or tools. This
approach is also very efficient, as unnecessary data transformations are avoided.

We now briefly describe our tool for automatic wrapper generation. We use a
layout descriptor for describing the format for each resource. Our layout descrip-
tor is similar in flavor to the Data Format Definition Language being developed by
the DFDL Working Group in the Global Grid Forum2. This allows us to integrate
our work with the Data Access and Integration Standards (DAIS) proposed by the
global grid forum. Such descriptions provide sufficient information for the system
to understand the layout of binary or character flat-files, without relying on any
domain- or format-specific information. Based on such information, our system is
able to discover and transform information from one low-level dataset to another
low-level dataset. This approach can efficiently transform large volumes of data
between a large number of sources, while avoiding unnecessary data transforma-
tions and tedious maintenance of manually written wrappers. For each resource,
only one layout descriptor needs to be written for each of its input and output
formats. Moreover, as new data sources or tools are published, or move to a new
format, only their layout descriptors needs to be written or rewritten.

In order to generate a wrapper that is capable of transforming a dataset of
a general format into another dataset of a general format, the system needs to
have information about the physical data layouts. It also needs to understand
the user’s logical view of the data (i.e. the schema) so that it can draw the
correspondence between the input and output datasets. We have designed a

2 Please see http://forge.gridforum.org/projects/dfdl-wg

158 G. Agrawal et al.

layout description language to achieve both of the above. The information about
both the source and the target data layouts are represented using our layout
description language. Tabular-structured input or output schemas can also be
described using the same language, whereas semi-structured input or output
schema are described using the XML DTD format. The layout parser parses
the layout descriptors and generates internal data entry representations. The
schemas are input into the mapping generator, which generates the mapping
between the source and the target data schema. The inferred schema mapping is
presented to the user in a flat file so that it can be verified or modified if needed.

The internal representation of data entries and the mapping completely de-
fines a wrapping task and the functionality of a wrapper can be inferred from
them. This inference can be carried out by either the wrapper generation sys-
tem, or the wrapper itself. For a better overall system performance, we need to
reduce the computations performed by the wrapper, and also allow it to execute
independent of the wrapper generation system. Therefore, a wrapper generation
system module, Application Analyzer, performs all the analysis and summarizes
important application-specific information for the wrapper in a data structure,
which we refer to as the WRAPINFO data structure.

The wrappers work independently from the wrapper generation system. Our
wrappers comprise three modules, the DataReader, the DataWriter and the Syn-
chronizer, each of which is independent of the specific transformation task that
needs to be carried out. The information specific to a wrapping task is already
captured in the WRAPINFO data structure. Using this data structure as the
input, these three modules can carry out a transformation task. The DataReader
and the DataWriter, as their names suggest, are responsible for parsing the input
dataset and writing to the output files, respectively. The Synchronizer serves as
a coordinator between these two modules, as it forwards the values constructed
by the DataReader to the DataWriter, and manages the input dataset buffer.

Our design is very well suited for generating wrappers to carry out transforma-
tion tasks in a grid environment. Wrapper generation can be easily implemented
as a grid service. As shown in the preliminary experimental evaluation of this
system (see [39]), for large datasets, the wrapper generation time is a very small
fraction of the actual wrapper execution time. The wrapper generator only re-
quires the layout descriptors as input. In comparison, a wrapper needs to be
executed at a location where the data movement costs for the input and out-
put datasets are minimized. At the same time, the transformation time can be
high, and the wrapper needs to be executed efficiently. By designing the wrap-
per with application independent modules and representing the WRAPINFO

data structure in a machine independent XML file, we make it simpler for the
wrappers to be ported for efficient execution on a variety of platforms.

2.3 FREERIDE-G: Middleware for Scalable Processing of Remote
Datasets

Many challenging applications, including those in the environmental area, involve
analysis of data from distributed datasets. This often leads to the need for remote

A Vision for Cyberinfrastructure for Coastal Forecasting 159

processing of a dataset. Even if all data is available at a single repository, it is
not possible to perform all analysis at the site hosting such a shared repository.
Networking and storage limitations make it impossible to down-load all data at
a single site before processing. Thus, an application that processes data from
a remote repository needs to be broken into several stages, including a data
retrieval task at the data repository, a data movement task, and a data processing
task at a computing site.

An important challenge in this area, which we believe has received only a
limited attention, is that careful coordination of storage, computing, and net-
working resources is required for efficiently analyzing datasets stored in remote
repositories. Because of the volume of data that is involved and the amount of
processing, it is desirable that both the data repository and computing site may
be clusters. This can further complicate the development of such data processing
applications.

We have been developing a middleware, FREERIDE-G (FRamework for
Rapid Implementation of Datamining Engines in Grid), which supports a high-
level interface for developing data mining and scientific data processing applica-
tions that involve data stored in remote repositories. Particularly, we have the
following two goals behind designing the FREERIDE-G middleware:

Support High-End Processing: Parallel configurations, including clusters,
are being used to support large scale data repositories. Many data mining ap-
plications involve very large datasets. At the same time, data mining tasks are
often compute-intensive, and parallel computing can be effectively used to speed
them up [38]. Thus, an important goal of the FREERIDE-G system is to enable
efficient processing of large scale data mining computations. It supports use of
parallel configurations for both hosting the data and processing it.

Ease Use of Parallel and Distributed Configurations: Developing paral-
lel data mining applications can be a challenging task. In a grid environment,
resources may be discovered dynamically, which means that a parallel applica-
tion should be able to execute on a variety of parallel systems. Thus, one of
the goals of the FREERIDE-G system is to support execution on distributed
memory and shared memory systems, as well as on cluster of SMPs, starting
from a common high-level interface. Another major difficulty in developing ap-
plications that involve remote data is appropriate staging of remote data, and
possibly caching when feasible and appropriate. FREERIDE-G is designed to
make data movement and caching transparent to application developers.

Prior Work: FREERIDE Middleware. Our proposed work on FREERIDE-
G is based on an earlier system, FREERIDE (FRamework for Rapid Imple-
mentation of Datamining Engines) [20,21]. This system was motivated by the
difficulties in implementing and performance tuning parallel versions of data
mining algorithms. FREERIDE is based upon the observation that parallel ver-
sions of several well-known data mining techniques share a relatively similar
structure. We have carefully studied parallel versions of apriori association min-
ing [1], Bayesian network for classification [3], k-means clustering [19], k-nearest

160 G. Agrawal et al.

neighbor classifier [17], artificial neural networks [17], and decision tree classi-
fiers [29]. In each of these methods, parallelization can be done by dividing the
data instances (or records or transactions) among the nodes. The computation
on each node involves reading the data instances in an arbitrary order, process-
ing each data instance, and performing a local reduction. The reduction involves
only commutative and associative operations, which means the result is inde-
pendent of the order in which the data instances are processed. After the local
reduction on each node, a global reduction is performed. FREERIDE exploits
this commonality to support a high-level interface for developing parallel imple-
mentations. The target environment are clusters of SMPs, which have emerged
as a cost-effective, flexible, and popular parallel processing configuration. Clus-
ters of SMP workstations, where each workstation has an attached disk farm,
offer both distributed memory or shared-nothing parallelism (across nodes of the
cluster) and shared-memory parallelism (within a node).

FREERIDE has been successfully used for developing parallel versions of anum-
ber of common mining algorithms, including apriori and FP-tree based association
mining, k-means and EM clustering, decision tree construction, and nearest neigh-
bor search [14,20,21,22,23].More recently, in collaborationwithRaghuMachiraju’s
groupatTheOhioStateUniversity,wehaveusedFREERIDEfor two scientificdata
analysis application, vortex analysis [16] and molecular defect detection [15,33].
Our experimental studies with both data mining and scientific data analysis ap-
plications have shown that FREERIDE allows very high parallel efficiency, allows
scaling to disk-resident datasets, and simplifies parallel implementation tasks.

FREERIDE-G. FREERIDE-G system will be directly built on the
FREERIDE middleware described in the previous section. The critical new func-
tionality we have added in the middleware is as the ability to support mining
and processing of data from remote repositories.

Figure 3 shows the three major components: (the data server, the resource
selection framework, and the compute node client). The data server runs on every
on-line data repository node in order to automate data delivery to the end-users

Computation

Computation

Data Caching Data Retrieval

Data Communication

Computation

Data Caching Data Retrieval

Data Communication

 . . .

Compute Resource Selection

Replica Selection

Remote Caching

Data Retrieval

Data Distribution

Data Communication

Data Communication

Data Retrieval

Data Distribution

Resource Selection
Framework

Compute NodesData Server

. . .

Data Communication

Data Caching Data Retrieval

Fig. 3. FREERIDE-G System Architecture

A Vision for Cyberinfrastructure for Coastal Forecasting 161

processing node(s). The resource selection framework has the following goals:
1) Finding computing resources, 2) Choosing replica, and 3) Finding non-local
caching resources. A compute server runs on every end-user processing node
in order to receive the data from the storage repository and perform applica-
tion specific analysis of it. In our ongoing work, we are integrating the resource
selection framework of FREERIDE-G with WS-Resource Framework.

3 Data Analysis Services

In this section, we describe the data analysis services we will be developing on
top of the middleware components described in the previous section. Our goal
will be to develop these independent of the specific datasets on which they may
be applied, or the resources on which they may be executed. Thus, these services
will be a part of the cyberinfrastructure for environmental applications.

In anticipation of the test cases to be deployed here, the services will fall
into three categories: Multi- Model/Data Integration Services, Querying Ser-
vices, and Mining Services. In surveying the various applications these services
address, it is noticed that there are two extremes of accessibility and usability
possible with these services: 1) Applications that involve quick, near real-time
forecasting/nowcasting problems such as coastal hazards and environmental dis-
ruptions; and 2) Applications to slower time base problems such as coastline and
global climate change. The former relies heavily on the simultaneous integration
of three dimensional physics-based models and one and two dimensional data sets
in streaming conditions to achieve timely accurate predictions. The latter relies
most heavily on the fusion of one, two, three, and four dimensional datasets,
mostly from sensors to determine highly precise changes, such as those in geo-
metric coastal aspects such as shoreline position and erosion, or environmental
quality trends required for global climate change assessment.

3.1 Multi-model Multi-sensor Data Integration Service

Three-dimensional data mapping from multi-sensor images, which are taken at
different times and altitudes and with different imaging principles (frame or
pushbroom), is a challenging task. Based on novel techniques developed under
Li’s group at The Ohio State University, we will be developing a grid service
for three-dimensional multi-sensor data integration. This service will be built on
top of our middleware for wrapper generation, and will be widely applicable to
a number of environmental applications.

This service will include three sub-service modules: Universal spatial data
transfer and conversion service, Multi-model integration service, and Multi-
sensor 3-D mapping service.

Universal Spatial Data Transfer and Conversion Service. Multi-
dimensional data used in the environmental research is heterogeneous and there
are different data types, data formats, reference systems, spatial resolutions,

162 G. Agrawal et al.

time scales, and accuracies associated with the data. For example, for coastal
informatics, vertical datums of most water-side data are based on tidal datums
such as Mean Sea Level (MSL), while those of land-side data are based on Geoid
models such as the North American Vertical Datum 1988 (NAVD88). Conver-
sions between various vertical datums are needed for integrating data on both
water side and land side [7].

Universal spatial data transfer and conversion (USDTC) service will be based
on the Wrapper Middleware described in the previous section. This will be a two-
step service, involving data format conversion and reference system conversion.
By using our wrapper generation service, user needs to input the description of
the data format and URL of the data to be converted. We will integrate our lay-
out description language with GML, which is an XML encoding for the transport
and storage of geographic information, including both the geometry and prop-
erties of geographic features3. As needed, reference system conversion service
will convert the spatial data into a predefined common georeference system. For
example, for the spatial data in Lake Erie, the vertical datum will be NAVD88
and the horizontal datum will be the North American Datum (NAD83) with an
UTM coordinate system in meters.

Multi-Model Integration Service. There exist several coastal modeling and
observing systems specifically designed for different coastal areas. However, there
is very little direct coupling between these in terms of sharing data and func-
tionalities. There is a clear need for a sustained and Integrated Ocean Ob-
serving System (IOOS) that will make more effective use of existing resources,
new knowledge, and advances in technology for ocean and coastal management.
Multi-model integration service will be designed for integrating different coastal
modeling and observing systems. The integration of different systems is realized
by controlling the input/output formats of the systems through the universal
spatial data transfer and conversion service. All communications between dif-
ferent modeling and observing systems and databases go through the wrapper
middleware. For example, when Model 1 requests data from Database 1, it will
submit a request to Database 1 along with the required data description. Once
Database 1 receives the request, it will extract the requested data, conduct nec-
essary data format conversion using wrapper middleware and reference system
conversion. Finally, the wrapper middleware parses the converted GML to the
data format requested by Model 1.

Multi-sensor 3-D Mapping Service. Stereographic mapping using aerial
photographs is a mature technology for topographic mapping. 3-D mapping
using high-resolution satellite (IKONOS and QuickBird) images has been re-
searched in recent years and accuracies comparable to those from aerial im-
ages have been reported [24,31,32,37]. A systematic study of the 3-D accuracy
improvement of IKONOS imagery with various adjustment models was con-
ducted and a number of practical guidelines have been presented [18]. However,
3-D mapping from multi-sensor images, which are taken at different times and

3 http://www.opengis.org

http://www.opengis.org

A Vision for Cyberinfrastructure for Coastal Forecasting 163

altitudes and with different imaging principles (frame or pushbroom), is an un-
solved and challenging task.

We will develop a comprehensive geometric model that depicts the transfor-
mation between ground point and image point. Two types of rigorous sensor/-
camera models, a frame camera model (for aerial photographs) and a generic
linear scanning (pushbroom) sensor model (for satellite images), along with one
replacement sensor model, namely a rational functional model (for satellite im-
ages and aerial photographs whose rigorous sensor model is not released, e.g.,
IKONOS images [25]), will be incorporated into the comprehensive model. With
sufficient ground control points, the sensor model parameters are solved/refined
in a unified least-squares adjustment. The parameters to be solved/refined in-
clude the exterior orientation parameters (position of the optical center and three
rotation angles) of the frame camera model, polynomial coefficients of the push-
broom model that depict the change of exterior orientation parameters along
scan lines, and additional parameters in image space to refine the rational func-
tional model. Using the least-squares adjustment, this will provide the optimal
orientation parameters of the multi-sensor images, and high accuracy 3-D po-
sitions of the tie points that link all the images together. In addition to this
comprehensive model, a systematic study will be conducted to evaluate the best
geometric configuration and to select the best combination of images based on
the analysis of altitude, baseline, convergent angle, and error propagation.

Based on the adjusted sensor orientation parameters and image matching
technology, a seamless digital terrain model (DTM) can be generated. An inno-
vative image matching method, based on the vision invariance theory, a coarse-
to-fine strategy, and epipolar geometry, will be developed for multi-sensor image
matching. Available rough DTM can be used in image matching to limit the
search range and thus to improve matching reliability. Subsequently, quantita-
tive information about 3-D shoreline positions can be derived with a high level
of accuracy using semi-automatic methods.

3.2 Querying Service

The second service we will provide will be for planning and processing queries
across environmental data repositories. Overall, our goal will be to support ef-
ficient and unified access over heterogeneous, high-dimensional spatio-temporal
coastal data. This will include several components: extracting suitable metadata
for image datasets and managing them using existing metadata catalogs [6,34],
query planning using such metadata, and query execution using our support for
data virtualization.

The distributed coastal data repositories involve large amounts of spatio-
temporal data in the form of sequences of images and dynamic streams of
empirical measurements, generated by a diverse set of data sources. The spatio-
temporal data is typically multi-dimensional, i.e., they have multiple attributes
that may be queried and analyzed, and/or include high-dimensional seman-
tic representations of aerial and satellite images, raster maps, and digital ter-
rain models. To enable query planning, a metadata catalog summarizing the

164 G. Agrawal et al.

contents of each data source is required. While storing, discovering, and access-
ing metadata has been widely studied, choosing appropriate metadata for image
databases is an open problem. The image sources are inherently large and each
image will be represented by multi-dimensional metadata describing the low-level
and high-level features of the image. Images from satellites, including SeaWiFS,
MODIS, Landsat 7 ETM+, ASTER, Envisat, IKONOS, and QuickBird, are be-
ing processed at the OSU Mapping and GIS Lab directed by Professor Li, a
co-PI for this project. Software developed at the Lab will be used, along with
commercial software such as Erdas Imagine and PCI Geomatics, to perform
comprehensive operations such as image enhancement, geo-registration, map
projection, image classification, feature extraction, coastal object recognition,
raster to vector conversion, image matching, DEM and orthophoto generation.
Shorelines, wetland boundaries, sea grasses sediment, and land cover informa-
tion are extracted automatically and/or semi-automatically and converted to
metadata, e.g., high-dimensional feature vectors. To generate a metadata index,
we have started exploring multi-stage VQ and split-VQ, which are well suited
for limited memory applications by imposing certain structural constraints on
the codebook. Our preliminary experiments on satellite images establish that
both split-VQ and multi-stage VQ can be effectively employed to design negligi-
bly small codebooks for a large-scale image database [35]. We will implement a
two-level VQ, which we refer to as Split-MS VQ, to index the distributed image
repositories on the Grid.

Query submission and composition will be handled by the central server,
which also performs query planning and routing of sub-queries to the necessary
database servers. An overall schema for the underlying distributed data sources
will be defined in the querying service tool along with a query planner module
that selects the necessary paths to execute a given query. For efficient access,
the query planner will take into consideration characteristics of the participating
nodes, connectivity between each node, and query characteristics, i.e., what data
is being requested and where clients reside. Access frequencies of the data can be
used to generate better query plans over heterogeneous nodes on the Grid. Given
a potential query workload and varying cost of storage and retrieval, we plan to
address the following questions: how should one create a metadata lookup table
and index structure for the distributed spatio-temporal and image data, how
much replication, if any, should one use, and what strategies should be used to
replicate this data.

3.3 Mining Services for Heterogeneous and High-Dimensional
Environmental Data

Environmental applications broadly involve two types of data analysis tasks. The
first type involve one or more large databases, and scalable and remote analysis
is desired. The second type involves real-time analysis of distributed streaming
data. As part of our cyberinfrastructure component for environmental applica-
tions, we will develop a number of grid mining services, using novel algorithms
being developed by Ferhatosmanoglu’s group. The first type of analysis tasks will

A Vision for Cyberinfrastructure for Coastal Forecasting 165

be implemented using the FREERIDE-G middleware described in the previous
section, and the second type of analysis tasks will be implemented using GATES
middleware. Both these systems have been developed by Agrawal’s group, and
were described in the previous section. All services will be coupled with the wrap-
per generation tool, to allow the algorithm implementations to be independent
of the specific layout of a sensor data source or database.

Scalable and Remote Mining Tasks. The distributed coastal environmen-
tal data demonstrate a great example of database heterogeneity in both space
and time. In addition to the image data, another typical data type is high-
dimensional time series, including continuous logging of water-level and tide
observations at various gauge stations and buoys at fine time intervals (equal or
non equal), which have been collected for decades. Finding specific water-level
and tidal data relevant to specific locations and associated image data within
the large distributed coastal database poses a great challenge. The current time
series data mining methods generally assume that the data are collected in equal
length intervals, and that in comparing time series, the lengths are equal to each
other. However, in environmental monitoring applications, the length of obser-
vations are neither fixed nor standardized, and the data sources are different
(e.g., waves, currents, wind, altimetric readings, etc.). Approaches for mining
time series data need to be revisited keeping the heterogeneity and wide range
of requirements in mind. A straightforward data mining process would apply the
algorithms globally over the whole data set. For example, to identify strongly
related groups of factors affecting the environment, one can apply a standard
clustering algorithm, where coastal attributes, observed by various data collec-
tion technologies, are clustered using a distance measure defined over the corre-
sponding high-dimensional vectors. However, the result of such a process would
have little or no meaning partially because of the obvious problems caused by
high-dimensionality, heterogeneity and incompleteness of the data, and partially
because of the difficulty of interpreting the output of such an analysis.

Since global mining of complex coastal databases is infeasible, we have been
developing an information-mining approach consisting of a simple preprocessing,
with minimal assumptions on the data, followed by two major steps [2]. In the
first step, significant and homogeneous subsets of data (e.g., data generated by
similar sources) are selected and analyzed using the mining algorithm of interest.
In the second step, the information gathered in the first step is joined by iden-
tifying common (or distinct) patterns over the results of mining of the subsets.
We plan to apply this framework to a variety of data mining techniques over
heterogeneous and high-dimensional environmental data sequences. For exam-
ple, for clustering, the first step corresponds to the clustering of sensors for each
data collection campaign, and the second step corresponds to finding strongly
related groups of sensors (or a set of representative sensors with minimal cross-
correlations) by mining common patterns over the clusters generated in the first
step. This algorithm will have three distinct results: a) groups of sensors, data
sources, or data types that detect relevant coastal environmental changes, b) a
global panel of sensors or data attributes, with corresponding weights, that can

166 G. Agrawal et al.

model the coastal impacts, and c) the distinct patterns of outliers and adverse
events which provide valuable information for the abnormal status of the coastal
environment and the ecosystem.

It is clear that any single clustering method or any single distance metric
would not be enough to capture all types of relationships, especially on such a
non-standard and high-dimensional set of data. The proposed two-step process
can be used to pool the information from different metrics, different clustering
algorithms, and from different sources of environmental data, resulting in more
robust outcomes. It minimizes the differences among time series caused by source
variation, hence, local groups of time series become equal length and equal inter-
val, which makes many powerful distance metrics applicable. The framework can
also be employed in collaborative studies, where the information rather than the
data across multiple sources is pooled and analyzed to extract knowledge that
may not be derivable using a single source. Sequence data mining and clustering
have been extensively studied from the perspective of efficiently searching or ex-
tracting rules from them. A similar approach can be developed for the proposed
system to see if any of the factors has an obvious effect on the model. However,
the current techniques will not capture multi-variate relationships between in-
volved attributes and factors analyzed. We plan to develop similarity measures
and models even when the number of observations per each attribute is relatively
short, which is the case for many similar information systems applications.

FREERIDE-G middleware, which has already been used for creating grid-
based and scalable implementations of clustering algorithms like k-means and
EM, will be used for implementing these algorithms. This will create services
which can flexibly use parallel environments for scalable execution, and will
perform data retrieval and data transfers transparently in a grid environment.

Managing and Mining Real-time Environmental Data Streams. Real-
time environmental monitoring requires continuous querying and analysis over
distributed data streams collected by dynamic data acquisition technologies,
such as land- and water-based in situ sensors. We are particularly interested
in enabling ways to utilize the data repository to monitor and characterize
chemical, hydrological, thermal, and seismic changes over both space and time.
The concept of data streams has recently attracted considerable attention in
database and networking communities. A fundamental challenge in distributed
data stream management is to develop an online and distributed compression
algorithm to minimize the cost of communication among distributed nodes of
the Grid. The resulting compressed data can also be utilized, centrally or in a
distributed fashion, by many data mining tasks such as clustering, classification,
change detection, statistical monitoring, selectivity estimation, query optimiza-
tion, and efficient query processing over multiple streams. For example, contin-
uous similarity queries can be executed to detect weather patterns similar to
a previously known pattern. Similarity joins over streaming and archival data
can be used in modeling and classifying a new object as a certain terrain prop-
erty, by comparing its attributes to a set of previously classified objects in the

A Vision for Cyberinfrastructure for Coastal Forecasting 167

archival database. Correlation-based joins can be implemented over the sum-
maries to identify pairs of similar streams such as water-level and quality
observations.

Following the success of quantization-based approaches for querying large-
scale and high-dimensional data repositories, we have proposed a scalar quan-
tizer, i.e., independent quantization, to compress multiple data streams [28].
Each newly arrived set of data elements is quantized without accessing previously
summarized data, which makes independent quantization particularly appropri-
ate for dynamic and distributed data streams. Independent quantization suffers
from the fact that correlation between data elements is partially ignored in return
for efficiency. Removal of redundancy via signal transforms followed by quanti-
zation is known to be more effective than purely quantization-based or purely
transform-based strategies [13]. We successfully applied this two step process to
static high-dimensional databases [8], where preprocessing of data is amortized
with gains in query processing. However, it is not of immediate use as an online
technique, because such preprocessing is infeasible on real-time streaming data.
A technique is needed that would achieve the best of both worlds, i.e., that would
be as effective as transform domain processing in removing redundancy and as
fast as independent quantization for online computation of the summary. Inves-
tigation of prediction-based methods will be a valuable step since the coastal
data of practical interest has a time-varying nature and possess a high amount
of correlation between nearby sample values. As a first step, we are developing
an online predictive quantizer where the correlation between the data elements
is exploited through the prediction of the set of incoming elements of a corre-
lated group of streams in terms of th latest few elements. In this prediction, the
error is efficiently quantized at each instant independently by utilizing a differ-
ent setting for that instant. In traditional applications, a prediction coefficient
is used over a single signal, which is assumed to be stationary. The overhead of
the coefficient is amortized by using the same coefficient over a long period of
time. For multiple streams in environmental monitoring applications, the same
coefficient can be utilized for a group of correlated data sources, such as spa-
tially close sensors. The coefficient is amortized over multiple streams, and can
be updated for each time instant for non-stationary signals. We have tested a
preliminary version of this approach over weather data streams obtained from
the National Climatic Data Center. The predictive quantization based approach
significantly outperforms current transform-based techniques [30] both in data
representation quality and in precision and recall for various types of queries.
Even when the current approaches use extra preprocessing over the data, this
approach achieves better results with its online algorithm. An unoptimized im-
plementation was capable of handling more than 600,000 streams per second on
a modest PC.

The above techniques will be implemented using GATES middleware, which
will result in widely deployable grid-services that can be executed on distributed
streaming sources.

168 G. Agrawal et al.

4 Applications

The two end applications where the cyberinfrastructure component will be de-
ployed are: real-time coastal forecasting and nowcasting, and longer-term coastal
erosion analysis and prediction. As part of this project, we are proposing to de-
velop and test end-to-end systems for these two applications, using real data
from a number of sources.

Fig. 4. Data Collection in Lake Erie

The coast is an area of intensive interaction between land, sea, and air. More
than 80 percent of the U.S. population lives within 50 miles of the coast [26].
This coastal zone is exploited by humans for food, recreation, transport, waste
disposal, and other needs. However, excessive discharge and uncontrolled human
activities, in addition to natural processes, have created environmental problems
in the coastal zone such as habitat modification, habitat destruction, and ocean
pollution.

Our deployment and evaluation will be carried out in context of the GLOS,
the Great Lakes Observation System4. GLOS already has a full three dimen-
sional nowcast and forecast system, which include GLFS: Great Lakes Forecast-
ing System operated at The Ohio State University, and GLCFS: Great Lakes
Coastal Forecasting System operated by the NOAA Great Lakes Environmen-
tal Research Laboratory, NOAA National Ocean Service, and NOAA National
Weather Service. This system makes forecasts for all five Lakes, including real
time predictions of waves, water levels, and 3-D currents, and temperature and
salinity fields. Forecasts are made twice daily for a 36 hour range and nowcasts
are made every hour. This system has been operational since 1990. Therefore,
the GLOS now consists of permanent in situ collection data, remotely acquired
data of all types and wavelengths, and a fully functioning nowcast/forecast
system.

4 http://glos.us

http://glos.us

A Vision for Cyberinfrastructure for Coastal Forecasting 169

4.1 Real-Time Coastal Nowcast and Forecasts

This application study will focus on creating a distributed, real-time cyberin-
frastructure application, using the GATES middleware and associated services
for mining time-series data.

Background: Nowcast/Forecast (N/F) systems contain coupled subsystems of
two and three dimensional models that are continuously exchanging data, sensor
data input consisting of continuous, streaming inputs of time series of data at
fixed points, and periodic 2 dimensional data sets from remote satellites. The
existing nowcast system for Lake Erie (Michigan) consists of inputs of real time
series of weather data collected at fixed points around the Lake by two different
agencies (Canadian and NWS), fixed point weather time series’ data collected
by the Coast Guard, weather data collected by NOAA Ships Observations Pro-
gram, which collects data from ships underway across the particular Lake, in
situ weather and temperature buoy data collected jointly by NOAA and Canada
at four fixed sites in Lake Erie, and water-level time series’ collected at 13 fixed
points around the Lake. Finally, real-time tributary input flow data are collected
for the four most important tributaries in the Lake from USGS. We also use an
adhoc basis two channels of AVHRR infrared and visible band satellite data to
get temperature fields at 1 km2 resolution and the same two bands of GOES-8
data to help with estimation of cloud cover for the heat flux calculations.

To assess the nowcasts, comparisons are made between the predictions made
at a certain hour to data collected for that particular hour as measured by the
same suite of data summarized above. That is, if we make a nowcast estimate
valid at 1:00PM (typically at 1:40 by the time all components are completed) we
will make an assessment of its accuracy by comparing the estimate to the actual
data measured precisely at 1:00 PM. To perform forecasts, we need to take short
range weather forecast data predicted by NWS, extract the gridded fields that
are available from the models at a height above the water surface, regrid them
to match the grid on the Lake N/F system, adjust the fields so they are valid
at the Lake surface, and the use them as input to the N/F models. This process
takes a bit longer than the process required for just the nowcasts.

The data collection environment in Lake Erie, for both real-time forecast-
s/nowcasts, and longer term coastal analysis is shown in Figure 4.

Problems and Approach: There are three areas of concern in the present
GLFS and GLCFS that we believe our cyberinfrastructure components can im-
prove. First, the systems as they stand now are completely hardwired. For the
most part, they closed to external coupling or cooperation. This was initially due
to the need to get to operational status and the lack of sound networking tools
back in the early to mid 1990s’, when the first system was assembled. Therefore
if a researcher wants to attach and test their own new forecast algorithm that
extends the system, say for example, to beach closings and coliform forecasts,
they would have to stop the system, and completely rebuild the system with the
new data feeds and code in it. This is clearly not desirable from the view-point
of advancing the system and involving the research community.

170 G. Agrawal et al.

Second, the hardwired nature of the system also prevents new data, which may
be collected either on an ad-hoc research basis or incrementally, to be ingested
into the system. Such might be the case when a broad field program provides
a suite of very rich data, say, for a period of two years. Finally, the hardwired
nature of the present system prevents relative ease of extracting and interpreting
(querying, mining) data that are being predicted while the N/F are being made.

This application study using cyberinfrastructure components will focus on
improvements in each of these three areas. We will construct incrementally more
robust test cases over the period of the project.

4.2 Coastal Erosion Prediction and Analysis

The second application will focus on coastal change monitoring and modeling.
This important and challenging application will serve as a demonstration of the
proposed data integration services, query services, and data mining services.
Ohio shore along Lake Erie will be use as a test site.

Background: Erosion along the Ohio shore of Lake Erie is a serious problem.
Many beaches along Ohio’s lakeshore were eroded due to the record-high lake
levels during 1970s - 1990s. The leftover unprotected bluffs, especially in the Lake
County east of Cleveland, OH, are even more vulnerable to wave erosion. Each
year, nearly 1.6 million tons of material is eroded, threatening public safety,
health, and welfare and causing extensive damage to residential, commercial,
industrial, and agricultural property. Economic losses caused by coastal erosion
in the Great Lakes region were estimated at 290 million in 1985 and 1986 and
at 9 million in 1985 in Lake County, Ohio (NOAA and ODNR, 1999).

Increased attention and effective action has been taken by the federal and state
agencies. The Ohio Department of Natural Resources (ODNR) identifies Coastal
Erosion as one of several priority coastal management issues (NOAA and ODNR,
1999). To minimize coastal erosion damages, ODNR was directed to identify
coastal erosion areas along Lake Erie shore. Accurate coastal change information
is crucial to identification of erosion areas as well as to many other coastal
applications, including coastal development, coastal environmental protection,
and coastal resource management, and decision making.

Advances in technologies, including space- and airborne imaging and land- and
water-based in situ sensors have been extensively utilized in coastal research and
applications. Large quantities of the coastal variation information are being used
to characterize the coastal physical environment with macro and micro changes
in both space and time. It is essential to integrate multiple sensor data in order
to best achieve the coastal change monitoring results that may not be achievable
using any single sensor.

Remote sensing technologies have been widely used as a major data source
for coastal monitoring, planning, conservation, evaluation, and management.
Coastal information such as coastal land use/land coverage, water quality, habi-
tat distribution, 3-D shoreline, coastal digital terrain model, etc., can be ex-
tracted from remote sensing data by applying certain image classification and

A Vision for Cyberinfrastructure for Coastal Forecasting 171

feature extraction algorithms. Coastal change information can also be detected
by comparing the above extracted information to the corresponding historical
one. Sometimes, historical imagery also needs to be processed to extract coastal
information which is not available in coastal data repositories.

Problems and Approach: In general, historical coastal data are located at
different federal, state, and local agencies, or research institutes. In order to
perform coastal change analysis, traditionally we have to request and collect
those data from different places and process them in a local computer. Due to
the bandwidth and storage limits, only those data in a small area can be obtained
and processed. In case we need to extend the study area, all the steps of data
collection and processing have to be repeated. Such kind of time-consuming and
data-duplication situations arise very often in current coastal research activities.

Another drawback of current approaches is that this type of operation often
causes delay between the time when data are available from the data provider,
and the time when user receives the updated news about the data availability.
Such delay can not ensure data synchronization in coastal change analysis. Thus,
inaccurate and untimely results have become inevitable.

In our cyberinfrastructure design, and through the use of the middleware
systems developed here, multiple-sensor integration will be realized in a highly
accurate, seamless, and systematic way. This will ensure high quality of the
integrated data for coastal change monitoring and modeling. Based on the pre-
vious and current research results of Ron Li, a co-PI of this proposal, on coastal
change analysis, data fusion, and shoreline change modeling, we will be deploy-
ing the cyberinfrastructure component for coastal change monitoring, analysis,
and modeling.

This system will include the following two components: 1) Coastal informa-
tion extraction and change detection, and 2) Coastal change and erosion pat-
tern analysis for delineation of coastal erosion areas. The proposed multi-model
multi-sensor integration service will serve as the backbone of the system. It will
support communication between distributed coastal data and functions as well
as necessary conversions of data formats and reference systems. The multi-sensor
3-D mapping service will be used to process IKONOS and QuickBird imagery for
extracting 3-D coastal features such as 3-D shoreline and DEM. The query ser-
vices will be used to retrieve historical coastal information for detection change
information.

We will use the query service and data mining services to perform coastal
change and erosion pattern analysis. Statistical analyses of shoreline changes will
be conducted to find out the erosion causes. The analyses include: 1) Correlation
analysis between the coastal shoreline position change, land use, and water levels,
2) Correlation analysis between the coastal change and human activities such as
coastal protection, and 3) Severe erosion pattern analysis caused by consistent
natural processes, human activities, or both. Our proposed mining services will
be used for each of these.

172 G. Agrawal et al.

5 Conclusions

This paper has given an overview of a recently initiated cyberinfrastructure
project at The Ohio State University. This project proposes to develop and eval-
uate a cyberinfrastructure component for environmental applications. This will
include developments in middleware, model integration, analysis, and mining
techniques, and the use of a service model for supporting two closely related
applications. These applications will be real-time coastal nowcasting and fore-
casting, and long-term coastal erosion analysis and prediction.

References

1. Agrawal, R., Shafer, J.: Parallel mining of association rules. IEEE Transactions on
Knowledge and Data Engineering 8(6), 962–969 (1996)

2. Altiparmak, F., Ferhatosmanoglu, H., Erdal, S., Trost, C.: Information mining over
heterogeneous and high dimensional time series data in clinical trials databases.
In: IEEE Transactions on Information Technology in Biomedicine

3. Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): Theory and practice.
In: Advanced in Knowledge Discovery and Data Mining, pp. 61–83. AAAI Press /
MIT Press (1996)

4. Chen, L., Reddy, K., Agrawal, G.: GATES: A Grid-Based Middleware for Dis-
tributed Processing of Data Streams. In: Proceedings of IEEE Conference on High
Performance Distributed Computing (HPDC). IEEE Computer Society Press, Los
Alamitos (2004)

5. Cornillon, P., Callagher, J., Sgouros, T.: OpeNDAP: Accessing data in a dis-
tributed, heterogeneous environment. Data Science Journal 2, 164–174 (2003)

6. Deelman, E., Singh, G., Atkinson, M.P., Chervenak, A., Hong, N.P.C., Kesselman,
C., Patil, S., Pearlman, L., Su, M.: Grid-Based Metadata Services. In: Proceed-
ings of the 16th International Conference on Scientific and Statistical Database
Management (SSDBM 2004) (2004)

7. Zhou, F., Niu, X., Li, R.: Vertical datum conversion in lake erie: A technical paper.
Voice of the Pacific, PACON Newsletter (2003)

8. Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., El Abbadi, A.: Vector approxima-
tion based indexing for non-uniform high dimensional data sets. In: Proceedings
of the 9th ACM Int. Conf. on Information and Knowledge Management, McLean,
Virginia, pp. 202–209 (November 2000)

9. Ferris, C., Farrell, J.: What are Web Services. In: Communications of the ACM
(CACM), pp. 31–35 (June 2003)

10. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid Services for Distributed Systems
Integration. IEEE Computer (2002)

11. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. In: Open
Grid Service Infrastructure Working Group, Global Grid Forum (June 2002)

12. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of Grid: Enabling Scalable Vir-
tual Organizations. International Journal of Supercomputing Applications (2001)

13. Gersho, A.: Vector Quantization and Signal Compression. Kluwer Academic Pub-
lishers, Dordrecht (1992)

14. Glimcher, L., Agrawal, G.: Parallelizing EM Clustering Algorithm on a Cluster of
SMPs. In: Proceedings of Europar (2004)

A Vision for Cyberinfrastructure for Coastal Forecasting 173

15. Glimcher, L., Agrawal, G., Mehta, S., Jin, R., Machiraju, R.: Parallelizing a Defect
Detection and Categorization Application. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS) (2005)

16. Glimcher, L., Zhang, X., Agrawal, G.: Scaling and Parallelizing a Scientific Feature
Mining Application Using a Cluster Middleware. In: Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium (IPDPS) (2004)

17. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco (2000)

18. Wang, J., Di, K., LI, R.: Evaluation and improvement of geopositioning accuracy
of ikonos stereo imagery. Journal of Surveying Engineering (2005)

19. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood
Cliffs (1988)

20. Jin, R., Agrawal, G.: A middleware for developing parallel data mining imple-
mentations. In: Proceedings of the first SIAM conference on Data Mining (April
2001)

21. Jin, R., Agrawal, G.: Shared Memory Parallelization of Data Mining Algorithms:
Techniques, Programming Interface, and Performance. In: Proceedings of the sec-
ond SIAM conference on Data Mining (April 2002)

22. Jin, R., Agrawal, G.: Communication and Memory Efficient Parallel Decision Tree
Construction. In: Proceedings of Third SIAM Conference on Data Mining (May
2003)

23. Jin, R., Agrawal, G.: Shared Memory Parallelization of Data Mining Algorithms:
Techniques, Programming Interface, and Performance. In: IEEE Transactions on
Knowledge and Data Engineering (TKDE) (2005)

24. Di, K., Ma, R., Li, R.: Geometric processing of ikonos stereo imagery for coastal
mapping applications. In: Photogrammetric Engineering and Remote Sensing
(2003)

25. Di, K., Ma, R., Li, R.: Rational functions and potential for rigorous sensor model
recovery. In: Photogrammetric Engineering and Remote Sensing (2003)

26. Mayer, L.A., Barbor, K.E., Boudreau, P.R., Chance, T.S., Fletcher, C.H., Greening,
H., Li, R., Mason, C., Snow-Cotter, S., Wright, D.J., Lewis, R.S., Feary, D.A.,
Schaefer, T., Forsbergh, Y., Mason, B., Schrum, A.: A geospatial framework for
the coastal zone. In: National Needs for Coastal Mapping and Charting (edited
book) (2004)

27. Li, X., Agrawal, G.: Supporting XML-Based High-level Interfaces Through Com-
piler Technology. In: Rauchwerger, L. (ed.) LCPC 2003. LNCS, vol. 2958. Springer,
Heidelberg (2004)

28. Liu, X., Ferhatosmanoglu, H.: Efficient k-nn search on streaming data series. In:
International Symposium on Spatial and Temporal Databases, Santorini, Greece,
pp. 83–101 (July 2003)

29. Murthy, S.K.: Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery 2(4), 345–389 (1998)

30. Ogras, U., Ferhatosmanoglu, H.: Online summarization of dynamic time series
data. VLDB Journal

31. Li, R., Di, K., Ma, R.: 3-d shoreline extraction from ikonos satellite imagery. Jour-
nal of Marine Geodesy (2002)

32. Li, R., Zhou, G., Schmidt, N.J., Fowler, C., Tuell, G.: Photogrammetric processing
of high-resolution airborne and satellite linear array stereo images for mapping
applications. International Journal of Remote Sensing (2002)

174 G. Agrawal et al.

33. Mehta, S., Hazzard, K., Machiraju, R., Parthasarathy, S., Willkins, J.: Detec-
tion and Visualization of Anomalous Structures in Molecular Dynamics Simulation
Data. In: IEEE Conference on Visualization (2004)

34. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Mahohar, M.,
Pail, S., Pearlman, L.: A Metadata Catalog Service for Data Intensive Applications.
In: Proceedings of Supercomputing 2003 (SC 2003) (November 2003)

35. Tuncel, E., Ferhatosmanoglu, H., Rose, K.: VQ-index: An index structure for sim-
ilarity searching in multimedia databases. In: ACM Multimedia, Juan Les Pins,
France, pp. 543–552 (December 2002)

36. Weng, L., Agrawal, G., Catalyurek, U., Kurc, T., Narayanan, S., Saltz, J.: An
Approach for Automatic Data Virtualization. In: Proceedings of the Conference
on High Performance Distributed Computing (HPDC) (2004)

37. Niu, X., Di, K., Wang, J., Lee, J., Li, R.: Geometric modelling and photogram-
metric processing of high-resolution satellite imagery. In: Proceedings of the XXth
Congress of the International Society for Photogrammetry and Remote Sensing
(ISPRS 2004) (2004)

38. Zaki, M.J.: Parallel and distributed association mining: A survey. IEEE Concur-
rency 7(4), 14–25 (1999)

39. Zhang, X., Agrawal, G.: Enabling information integration and workflows in a grid
environment with automatic wrapper generation. In: SC 2005. ACM Press, New
York (2005)

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 175–190, 2008.
© Springer-Verlag Berlin Heidelberg 2008

OGC® Sensor Web Enablement: Overview and High
Level Architecture

Mike Botts1, George Percivall2, Carl Reed3, and John Davidson4

1 University of Alabama in Huntsville
mike.botts@uah.edu

2 Executive Director, Interoperability Architecture
Open Geospatial Consortium (OGC), Inc.
gpercivall@opengeospatial.org

3 CTO, Open Geospatial Consortium
creed@opengeospatial.org

4 Image Matters, LLC
johnd@imagemattersllc.com

Abstract. The Open Geospatial Consortium (OGC) standards activities that focus
on sensors and sensor networks comprise an OGC focus area known as Sensor
Web Enablement (SWE). Readers interested in greater technical and architecture
details can download the OGC SWE Architecture Discussion Paper titled “The
OGC Sensor Web Enablement Architecture” (OGC document 06-021r1).

Keywords: Open Geospatial Consortium, Inc., OGC, sensors, sensor webs, stan-
dards, Sensor Web Enablement (SWE), Observations & Measurements Schema
(O&M), Sensor Model Language (SensorML, Transducer Model Language
(TransducerML or TML), Sensor Observations Service (SOS), Sensor Planning
Service (SPS), Sensor Alert Service (SAS), Web Notification Services (WNS).

1 Introduction

Sensor Web Enablement (SWE) in the Open Geospatial Consortium, Inc. (OGC)1
context refers to web accessible sensor networks and archived sensor data that can be
discovered, accessed and, where applicable, controlled using open standard protocols
and interfaces (APIs). Sensor location is usually a critical parameter for sensors on the
Web, and the OGC sets geospatial industry standards, so SWE standards are being
harmonized with other OGC standards for geospatial processing.

Members of the OGC are building a framework of open standards for exploiting
Web-connected sensors and sensor systems of all types: flood gauges, air pollution
monitors, stress gauges on bridges, mobile heart monitors, Webcams, satellite-borne
earth imaging devices and countless other sensors and sensor systems.

1 The OGC is an international consortium of industry, academic and government organizations

who collaboratively develop open standards for geospatial and location services. (See
http://www.opengeospatial.org.)

176 M. Botts et al.

(Image courtesy of the OGC)

Fig. 1. Sensor Web Concept

SWE has extraordinary potential significance in many domains of activity, as the
costs of sensor and network components fall, as their combined use spreads, and as
the underlying Web services infrastructure becomes increasingly capable. The OGC
consensus standards process coupled with strong international industry and govern-
ment support in domains that depend on sensors has resulted in SWE standards that
are quickly becoming established in all application areas where such standards are of
use.

2 Overview

In much the same way that Hyper Text Markup Language (HTML) and Hypertext
Transfer Protocol (HTTP) standards enable the exchange of almost any type of infor-
mation on the Web, the OGC’s SWE standards enable the Web-based discovery,
exchange, and processing of sensor observations, as well as the tasking of sensor
systems. The functionality includes:

• Discovery of sensor systems, observations, and observation processes that meet an
application or users immediate needs;

• Determination of a sensor’s capabilities and quality of measurements;
• Access to sensor parameters that automatically allow software to process and geo-

locate observations;
• Retrieval of real-time or time-series observations and coverages in standard encod-

ings

 OGC® Sensor Web Enablement 177

• Tasking of sensors to acquire observations of interest;
• Subscription to and publishing of alerts to be issued by sensors or sensor services

based upon certain criteria.

Below is a list of the OpenGIS® Standards that make up the SWE suite of stan-
dards. Each specifies encodings for describing sensors and sensor observations and/or
interface definitions for web services:

1. Observations & Measurements Schema (O&M) – (OGC Adopted Standard)

Standard models and XML Schema for encoding observations and measurements
from a sensor, both archived and real-time.

2. Sensor Model Language (SensorML) – (OGC Adopted Standard) Standard
models and XML Schema for describing sensors systems and processes; provides
information needed for discovery of sensors, location of sensor observations,
processing of low-level sensor observations, and listing of taskable properties.

3. Transducer Markup Language (TransducerML or TML) – (OGC Adopted
Standard) The conceptual model and XML Schema for describing transducers
and supporting real-time streaming of data to and from sensor systems.

4. Sensor Observations Service (SOS) – (OGC Adopted Standard) Standard web
service interface for requesting, filtering, and retrieving observations and sensor
system information. This is the intermediary between a client and an observation
repository or near real-time sensor channel.

5. Sensor Planning Service (SPS) – (OGC Adopted Standard) Standard web ser-
vice interface for requesting user-driven acquisitions and observations. This is the
intermediary between a client and a sensor collection management environment.

6. Sensor Alert Service (SAS) – (OGC Best Practices document) Standard web
service interface for publishing and subscribing to alerts from sensors.

7. Web Notification Services (WNS) – (OGC Best Practices document) Standard
web service interface for asynchronous delivery of messages or alerts from SAS
and SPS web services and other elements of service workflows.

XML is a key part of the infrastructure that supports SWE. When the network con-

nection for a sensor or system is layered with Internet and Web protocols, eXtensible
Markup Language (XML) schemas defined in SWE standards can be used to publish
formal descriptions of the sensor's capabilities, location, and interfaces. Then Web
brokers, clients and servers can parse and interpret the XML data, enabling automated
Web-based discovery of the existence of sensors and evaluation of their characteris-
tics based on their published descriptions. The information provided also enables
applications to geolocate and process sensor data without requiring a priori knowl-
edge of the sensor system.

Information in the XML schema about a sensor's control interface enables auto-
mated communication with the sensor system for various purposes: to determine, for
example, its state and location; to issue commands to the sensor or its platform; and,
to access its stored or real-time data. This approach to sensor and data description also

178 M. Botts et al.

(Image courtesy of the OGC)

Fig. 2. The role of the Sensor Web Enablement framework

provides an efficient way to generate comprehensive standard-schema metadata for
data produced by sensors, facilitating the discovery and interpretation of data in dis-
tributed archives.

3 The SWE Standards Framework

Below we describe each of the seven SWE standards.

3.1 Observations and Measurements (O&M)

The OpenGIS Observations and Measurements (O&M) Standard provides a standard
model for representing and exchanging observation results. O&M provides standard
constructs for accessing and exchanging observations, alleviating the need to support
a wide range of sensor-specific and community-specific data formats. O&M combines
the flexibility and extensibility provided by XML with an efficient means to package
large amounts of data as ASCII or binary blocks.

The Observations and Measurements (O&M) Standard describes a conceptual model
and XML encoding for measurements and observations. O&M establishes a high-level
framework for representing observations, measurements, procedures and metadata of
sensor systems and is required by the Sensor Observation Service Standard, for imple-
mentation of SWE-enabled architectures, and for general support for OGC standards
compliant systems dealing in technical measurements in science and engineering.

 OGC® Sensor Web Enablement 179

3.2 Sensor Model Language (SensorML) 2

The OpenGIS Sensor Model Language (SensorML) Standard provides an information
model and encodings that enable discovery and tasking of Web-resident sensors and
exploitation of sensor observations.i

The measurement of phenomena that results in an observation consists of a series
of processes (also called procedures), beginning with the processes of sampling and
detecting and followed perhaps by processes of data manipulation.

SensorML defines models and XML Schema for describing any process, including
measurement by a sensor system, as well as post-measurement processing.

Within SensorML, everything including detectors, actuators, filters, and operators
is defined as a process model. A Process Model defines the inputs, outputs, parame-
ters, and method for that process, as well as a collection of metadata useful for dis-
covery and human assistance. Because SensorML provides a functional model of the
sensor system, rather than a detailed description of its hardware, each component can
be included as part of one or more process chains that can either describe the lineage
of the observations or provide a process for geolocating and processing the observa-
tions to higher level information.

3.3 TransducerML (TML)

The OpenGIS® Transducer Markup Language (TML) Encoding Standard is an effi-
cient application and presentation layer communication protocol for exchanging live
streaming or archived data to (i.e. control data) and/or sensor data from any sensor
system. A sensor system can be one or more sensors, receivers, actuators, transmit-
ters, and processes. A TML client can be capable of handling any TML enabled sen-
sor system without prior knowledge of that system.

The protocol contains descriptions of both the sensor data and the sensor system
itself. It is scalable, consistent, unambiguous, and usable with any sensor system in-
corporating any number sensors and actuators. It supports the precise spatial and tem-
poral alignment of each data element. It also supports the registration, discovery and
understanding of sensor systems and data, enabling users to ignore irrelevant data. It
can adapt to highly dynamic and distributed environments in distributed net-centric
operations.

The sensor system descriptions use common models and metadata and they de-
scribe the physical and semantic relationships of components, thus enabling sensor
fusion.

TML was introduced into the OGC standards process in 2004 and is now part of
the SWE family of standards. It complements and has been harmonized with Sen-
sorML and O&M. TML provides an encoding and a conceptual model for streaming
real-time “clusters” of time-tagged and sensor-referenced observations from a sensor
system. SensorML describes the system models that allow a client to interpret, geolo-
cate, and process the streaming observations.

2 SensorML got its start in earlier NASA and CEOS (Committee for Earth Observation Satel-

lites) projects. It was brought into OGC because OGC provides a process in which this and
other elements of Sensor Web Enablement could be developed in an open consensus process.

180 M. Botts et al.

3.4 Sensor Observation Service (SOS)

The OpenGIS Sensor Observation Service Interface Standard defines an API for man-
aging deployed sensors and retrieving sensor observation data. SOS provides access
to observations from sensors and sensor systems in a standard way that is consistent
for all sensor systems including remote, in-situ (e.g., water monitoring), fixed and
mobile sensors (including airborne / satellite imaging). The SOS is a critical element
of the SWE architecture, defining the network-centric data representations and opera-
tions for accessing and integrating observation data from sensor systems.

The SOS mediates between a client and an observation repository or near real-time
sensor channel. Clients can also access SOS to obtain metadata information that de-
scribes the associated sensors, platforms, procedures and other metadata associated
with observations.

Registries (also called catalogs) play an important role. The schema for each sensor
platform type is available in a registry, and sensors of that type are also in registries,
with all their particular information. The schema for each observable type is available
in a registry, and stored collections (data sets) of such observables and live data
streams of that type are also in registries. Searches on the registries might reveal, for
example, all the active air pollution sensors in London. Similarly, automated methods
implementing the SOS standard might be employed in an application that displays a
near real-time air pollution map of the city.

3.5 Sensor Planning Service (SPS)

The OpenGIS® Sensor Planning Service (SPS) Interface Standard defines interfaces
for queries that provide information about the capabilities of a sensor and how to task
the sensor. The standard is designed to support queries that have the following pur-
poses: to determine the feasibility of a sensor planning request; to submit such a re-
quest; to inquire about the status of such a request; to update or cancel such a request;
and to request information about other OGC Web services that provide access to the
data collected by the requested task.

An example of an environmental support system is diagrammed above in Figure 3.
This system uses SPS to assist scientists and regulators in formulating collection re-
quests targeted at water quality monitoring devices and data archives. Among other
things, it allows an investigator to delineate geographic regions and time frames, and
to choose quality parameters to be excluded or included.

3.6 Sensor Alert Service (SAS)

The OpenGIS® Sensor Alert Service Best Practices Paper (OGC Document 06-
028r3) specifies interfaces for requesting information describing the capabilities of a
Sensor Alert Service, for determining the nature of offered alerts, the protocols used,
and the options to subscribe to specific alert types. The document defines an alert as a
special kind of notification indicating that an event has occurred at an object of inter-
est, which results in a condition of heightened watchfulness or preparation for action.
Alerts messages always contain a time and location value. The SAS acts like a regis-
try rather than an event notification system. That is, the SAS will not send any alerts.
All actual messaging is performed by a messaging server.

 OGC® Sensor Web Enablement 181

(Image courtesy of the OGC)

Fig. 3. Typical in situ Sensor Planning Service

3.7 Web Notification Service (WNS)

The OpenGIS® Web Notification Service (WNS) Best Practices Paper (OGC Docu-
ment 06-095) specifies an open interface for a service by which a client may conduct
asynchronous dialogues (message interchanges) with one or more other services. As
services become more complex, basic request-response mechanisms need to contend
with delays and failures. For example, mid-term or long-term transactions demand
functions to support asynchronous communications between a user and the corre-
sponding service, or between two services, respectively. A WNS is required to fulfill
these needs within the SWE framework.

4 Sensor Web Standards Harmonization

4.1 IEEE 1451 Transducer Interfaces

An open standards framework for interoperable sensor networks needs to provide a
universal way of connecting two basic interface types – transducer interfaces and
application interfaces. Specifications for transducer interfaces typically mirror hard-
ware specifications, while specifications for service interfaces mirror application
requirements. The sensor interfaces and application services may need to interoperate
and may need to be bridged at any of many locations in the deployment hierarchy.

182 M. Botts et al.

Fig. 4. IEEE-1451 in the SWE Interoperability Stack (Image courtesy of the OGC)

At the transducer interface level, a "smart" transducer includes enough descriptive
information so that control software can automatically determine the transducer's
operating parameters, decode the (electronic) data sheet, and issue commands to read
or actuate the transducer.

To avoid the requirement to make unique smart transducers for each network on
the market, transducer manufacturers have supported the development of a universally
accepted transducer interface standard, the IEEE 1451 standard.

The object-based scheme used in 1451.1 makes sensors accessible to clients over a
network through a Network Capable Application Processor (NCAP), and this is the
point of interface to services defined in the OGC Sensor Web Enablement standards.
In Figure 4, SWE services such as SOS act as clients (consumers) of IEEE-1451
NCAP services and TEDS documents, thereby enabling interactions with heterogene-
ous sensor systems via scalable networks of applications and services.

In addition to IEEE 1451, the SWE standards foundation also references other
relevant sensor and alerting standards such as the OASIS Common Alerting Protocol
(CAP), Web Services Notification (WS-N) and Asynchronous Service Access Proto-
col (ASAP) standards. OGC works with the groups responsible for these standards to
harmonize them with the SWE standards.

 OGC® Sensor Web Enablement 183

4.2 Imaging Sensors

The SWE sensor model supports encoding of all the parameters necessary for charac-
terizing complex imaging devices such as those on orbiting earth imaging platforms.
ISO and OGC have cooperated to develop two ISO standards that are relevant to the
SWE effort: ISO 19130 Geographic Information – Sensor and Data Model for Im-
agery and Gridded Data and ISO 19101-2 Geographic Information – Reference Model
– Imagery (OGC Abstract Specification, Topic 7). Other related work for support of
imaging sensors within the SWE context include: OpenGIS® Geography Markup
Language (GML) Encoding Standard, GML Application Schema for EO Products
Best Practices Paper (OGC Document 06-080r2), OpenGIS® GML in JPEG 2000 for
Geographic Imagery Encoding Standard and OpenGIS GML Encoding of Discrete
Coverages Best Practices Paper (OGC Document 06-188r1).

5 Current Implementation Efforts

Below are descriptions off some current SWE implementation efforts.

5.1 NASA

Adopting sensor webs as a strategic goal, the U.S. National Aeronautics and Space
Administration (NASA) has funded a variety of projects to advance sensor web
technology for satellites. A number of these projects have adopted the OGC's Sensor
Web Enablement (SWE) suite of standards. Central to many of these efforts has been
the collaboration between the NASA Jet Propulsion Lab and the NASA Goddard
Space Flight Center (GFSC) using the Earth Observing 1 (EO-1) and assorted other
satellites to create sensor web applications which have evolved from prototype to
operational systems.

In the OWS-4 test bed activity, GSFC, Vightel Corp., and Noblis initiated a sensor
web scenario to provide geographic information system (GIS)-ready sensor data and
other infrastructure data to support a response to a simulated wildfire emergency. One
of the satellites used in the demonstration was NASA's EO-1, which had the nearest
next in-time view for the target, and so provided the real-time data used. An OWS-4
team prototyped the preliminary transformation to SWE implementation using the
Open Source GeoBliki framework they developed for this purpose. Both JPL and
GSFC are in the process of changing the remaining EO-1 interfaces to OGC SWE
compatibility. Figure 5 shows some of the other missions that have begun to adapt
portions of the standard. NASA is using the SWE standards to standardize and thus
simplify sending commands to satellites.

5.2 SensorNet®

SensorNet®3 is a vendor-neutral interoperability framework for Web-based discovery,
access, control, integration, analysis, exploitation and visualization of online sensors,

3 http://www.sensornet.gov

184 M. Botts et al.

(NASA images)

Fig. 5. All of these satellite and airborne sensors are, at least some of the time, using SensorML
for geolocation and other purposes. See NASA’s JPL and GSFC Sensorweb/EO-1
pages, http://sensorweb.jpl.nasa.gov/ and http://eo1.gsfc.nasa.gov/ .

transducers, sensor-derived data repositories, and sensor-related processing capabili-
ties. It is being designed and developed by the Computational Sciences and Engineer-
ing Division at Oak Ridge National Laboratory (ORNL), in collaboration with the
National Oceanic and Atmospheric Administration (NOAA), the Open Geospatial
Consortium (OGC), the National Institute for Standards and Technology (NIST), the
Institute of Electrical and Electronics Engineers (IEEE), the Department of Defense,
and numerous universities and private sector partners. The purpose of SensorNet is to
provide a comprehensive nationwide system for real-time detection, identification,
and assessment of chemical, biological, radiological, nuclear, and explosive hazards.

The SensorNet team is developing prototypes based on standards and best
practices to network a wide variety of sensors for strategic testbeds at military
installations, traffic control points, and truck weighing stations. The sensor networks
will be connected by secure and redundant communication channels to local, regional
and national operations centers. These network testbeds will provide a basis for
interfaces to 911 centers, mass notification networks, automated predictive plume
modeling applications and evacuation models.

 OGC® Sensor Web Enablement 185

(Image courtesy of ORNL)

Fig. 6. SensorNet lays the groundwork for rapid deployment of a nationwide real-time detec-
tion system

5.3 HMA in Europe

The European Space Agency and various partner organizations in Europe are
collaborating on the Heterogeneous Mission Accessibility (HMA) project. HMA's
high-level goals include consolidating earth imaging and other geospatial
interoperability requirements; defining interoperable protocols for cataloging,
ordering, and mission planning; and addressing interoperability requirements arising
from security concerns such as authorization and limiting reuse. HMA involves a
number of OGC standards, including the Sensor Planning Service, which supports the
feasibility analysis requirements of Spot Image optical satellite missions (Figure 7).

5.4 Northrop Grumman’s PULSENet

Northrop Grumman Corp. (NGC) (http://www.northropgrumman.com) has been
using the SWE standards in a major internal research and development (IRAD)
project called Persistent Universal Layered Sensor Exploitation Network (PULSENet)
(Figure 8). This real-world test bed’s objective is to prototype a global sensor web
that enables users to:

186 M. Botts et al.

Image courtesy of ESA

Fig. 7. SPS GetFeasibility operation in a single and multiple satellite environment

• Discover sensors (secure or public) quickly, send commands to them, and
access their observations in ways that meet user needs

• Obtain sensor descriptions in a standard encoding that is understandable by a
user and the user’s software

• Subscribe to and receive alerts when a sensor measures a particular
phenomenon

In its first year, PULSENet was successfully field tested under a real-life scenario
that fused data from four unattended ground sensors, two tracking cameras, 1,800
NOAA weather stations and the EO-1 satellite.

5.5 SANY Sensors Anywhere

SANY IP (http://www.sany-ip.org/) (Figure 9) is co-funded by the Information
Society and Media Directorate General of the European Commission. SANY IP
intends to contribute to Global Monitoring for Environment and Security (GMES, a
major European space initiative), and the Global Earth Observation System of
Systems (GEOSS) by developing a standard open architecture and a set of basic
services for in situ sensor integration of all kinds of sensors, sensor networks, and
other sensor-like services. It aims to improve the interoperability of in-situ sensors

 OGC® Sensor Web Enablement 187

(Image courtesy of Northrop Grumman)

Fig. 8. PULSENet clients in multiple Web locations can task heterogeneous sensors and sensor
systems

and sensor networks and to allow quick and cost-efficient reuse of data and services from
currently incompatible sources for future environmental risk management applications.
Though SANY addresses interoperability in monitoring sensor networks in general, it
focuses on air quality, bathing water quality, and urban tunnel excavation monitoring.

The SANY Consortium recognizes the OGC’s SWE suite of standards as one of
the key technologies that can eventually lead to self-organizing, self-healing, ad-hoc
networking of in situ and earth observation sensor networks. Earlier this year, SANY
evaluated the capabilities of SWE services with the intention of actively contributing
to further development of the SWE standard specifications. As reported at the OGC
TC meeting in Ispra (December 2007), the SANY Consortium has described the
common architecture used in SANY baseline applications; included architectural
requirements inherited from ORCHESTRA, GEOSS, etc.; and published a road map
for v1, v2, and v3 versions of the architecture.

188 M. Botts et al.

SP2
Sensor Networks

SP3
Decision Support

SP4
Air Pollution Risks

SP5
Marine Risks

SP6
Geohazards

SP7
Community Bldg

MASS/SSEORCHESTRA
OGC SWE
IEEE 1451

IMARQUWEDAT
Existing models

...

COSMUS
TERRAFIRMA

inheritance

Fig. 9. SANY project inheritance and activities. (Image from an Enviroinfo 2006 article, Denis
Havlik et al, "Introduction to SANY (Sensors Anywhere)Integrated Project" In: Klaus
Tochtermann, Arno Scharl (eds).

5.6 52North

The German organization 52°North provides a complete set of SWE services under
GPL license. This open source software is being used in a number of real-world
systems, including a monitoring and control system for the Wupper River watershed
in Germany and the Advanced Fire Information System (AFIS), wildfire monitoring
system in South Africa.

One of several research projects using 52°North's software is the German
Indonesian Tsunami Early Warning System (GITEWS) (Figure 11), a 35-million-euro
project of the German aerospace agency, DLR, and the GeoForschungsZentrum
Potsdam (GFZ), Germany's National Research Centre for Geosciences. GITEWS will
use SWE services as a front-end for sharing Tsunami-related information among the
various components of the GITEWS software itself. GITEWS uses real-time sensors,
simulation models, and other data sources, all of which must be integrated into a
single system. SANY, mentioned earlier, is also using 52°North's software.

5.7 Access to U.S. Hydrologic Data

The Consortium of Universities for the Advancement of Hydrologic Science Inc.
(CUAHSI) is an organization founded to advance hydrologic research and education

 OGC® Sensor Web Enablement 189

(Image courtesy of GITWS)

Fig. 10. German Indonesian Tsunami Early Warning System (GITEWS) components

by organizing and supporting university-based collaborative projects. CUAHSI repre-
sents more than 100 U.S. universities, as well as international affiliates, and is sup-
ported by the U.S. National Science Foundation. Its Hydrologic Information System
(HIS) project involves several research universities and the San Diego Supercomputer
Center as the technology partner. For three years, the CUAHSI HIS team has been
researching, prototyping, and implementing Web services for discovering and access-
ing different hydrologic data sources, and developing online and desktop applications
for managing and exploring hydrologic time series and other hydrologic data.

The core of the HIS design is a collection of WaterOneFlow SOAP services for
uniform access to heterogeneous repositories of hydrologic observation data. (SOAP
is a protocol for exchanging XML-based messages over computer networks. SOAP
forms the foundation layer of the Web services stack, providing a basic messaging
framework that more abstract layers can build on.) The services follow a common
XML messaging schema named CUAHSI WaterML, which includes constructs for
transmitting observation values and time series, as well as observation metadata
including information about sites, variables, and networks. At the time of writing, the
services provide access to many federal data repositories (at USGS, EPA, USDA,
NCDC), state and local data collections, as well as to data collected in the course of
academic projects. The HIS Server, which supports publication of hydrologic
observations data services, is deployed at 11 NSF-supported hydrologic observatories
across the country and a number of other university sites (Figure 11).

190 M. Botts et al.

Image courtesy of CUAHSI.

Fig. 11. WaterOneFlow Web services will provide a standard mechanism for flow of hydro-
logic data between hydrologic data servers (databases) and users

The WaterML specification (Figure 11) is available as an OGC discussion paper
(document 07-041). The CUAHSI HIS team is working with OGC to harmonize it
with OGC standards such as GML and the OGC Observations and Measurements
specification to make the next version of CUAHSI Web services OGC-compliant.
The project’s web site is www.cuahsi.org/his. The project is supported by NSF award
EAR-0622374, which is gratefully acknowledged.

6 Conclusion

OGC’s SWE standards have the potential to become key parts of an integrated global
framework for discovering and interacting with Web-accessible sensors and for
assembling and utilizing sensor networks on the Web. OGC invites additional par-
ticipation in the consensus process and also invites technical queries related to new
implementations of the emerging standards.

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 191–209, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Linking Geosensor Network Data and Ontologies to
Support Transportation Modeling

Kathleen Stewart Hornsby1,2 and Kraig King 2

1 National Center for Geographic Information and Analysis
2 Department of Spatial Information Science and Engineering

University of Maine
Orono, ME 04469-5711

{kathleen,kking}@spatial.maine.edu

Abstract. This work discusses the supporting role of ontologies for geosensor
network data focusing on methods for linking geosensor network datasets with
ontologies. A major benefit gained from this kind of linking is the augmentation
of databases with generalization or specialization relations from an ontology.
We present methods for linking based on a transportation application where
data on vehicle position is collected from sensors deployed along a road net-
work and stored in a geosensor database. A mechanism for linking, imple-
mented as a tab widget within the Protégé ontology editor, is introduced. This
widget associates data values from the geosensor database with classes in the
ontology and returns linked terms (i.e., matches) to the user as a set of equiva-
lence relations.

Keywords: transportation ontologies; geosensor network data; moving object
databases; linking ontologies.

1 Introduction

Where data collected from geosensor networks are capable of giving users a more-or-less
continual record of measured values with respect to geospatial phenomena, these data
streams by themselves do not necessarily give a context for the data that includes seman-
tics. Combining such data streams with ontologies, however, provides a foundation for
deriving a real-time understanding of dynamic geospatial domains that incorporate se-
mantics. Ontologies are a structured way for describing the characteristics and relation-
ships of objects found in the world around us. For example, a network of sensors placed
along a roadway measures the positions of vehicles at fixed reference points over time.
These measurements in combination with supporting ontologies provide a basis for rea-
soning about, for example, the type of vehicles traveling on the road network (e.g., is the
vehicle traveling behind my automobile a police car?) as well as semantic similarities be-
tween them (e.g., both the police car and ambulance traveling ahead of me are a type of
emergency road vehicle). The details of the objects and their associated positions are de-
rived from data streams and stored in databases, while generalizations or refinements of
the moving objects are supplied by ontologies.

192 K. Stewart Hornsby and K. King

Ontologies can play a role in the integration and combination of data streams from
different sources (e.g., images from traffic cams combined with data from fixed-
location sensors along a road) by providing the foundation for discovering the simi-
larities between the sensor data sources. The semantic descriptions supplied by
ontologies enable computers to process these geosensor data streams, such that their
data can be extended and reused. Ontologies contribute to this interoperability by
providing additional perspectives that are intelligible by both computers and humans.
This feature makes possible machine learning algorithms that support linking mecha-
nisms for geosensor data.

In this work we consider methods for combining data from geosensor networks by
linking the databases storing sensor data with ontologies that model the objects moving
within a transportation domain. Existing applications such as MAPONTO and VisAVis
map database schemas with elements of the ontology. However, more information may
be desired by means of linking the instance-level data stored within the geosensor data-
base to the class and attribute names in a related ontology. Users can leverage this inte-
gration of geosensor data streams to aid in their understanding of the semantics of the
objects traveling on the road network around them. For example, a cautious driver may
want to know the kinds of emergency vehicles surrounding their vehicle. This research
introduces a linking mechanism, implemented as a tab widget within the Protégé ontol-
ogy editor [1], that will be used to intuitively connect geosensor network data with an
ontology to increase or decrease information granularity.

The remainder of this chapter is structured as follows: a discussion of related re-
search on geospatial ontologies as well as streaming data collected within a geosensor
network is presented and a framework for collecting geospatial positional data for
moving objects on a road network is introduced. In addition, a database structure for
storing the positional data is proposed. Based on the available classes of objects origi-
nating from existing transportation ontologies, an ontology of transportation devices
is introduced. Finally, a formal framework and rationale for linking geosensor net-
work data with the TransportationDevice ontology is presented. Conclusions and
plans for future work are discussed in the final section of the chapter.

2 Related Work

The collection, organization, analysis and delivery of geospatial information from dis-
tributed sensor networks is an active research area (see, for example, [2]). Tracking
patterns of moving objects (i.e., vehicles) is a subfield of geosensor research, with one
focus relating to the modeling of moving objects via sequences of location-time pairs
that form trajectories [3, 4, 5, 6, 7, 8]. Trajectories are fundamental for tracing past
and current object movement as well as predicting future motion plans [9]. Additional
research has focused on hybrid representations for modeling moving objects, such as
nonmaterialized trajectories, in an effort to overcome location imprecision due to sen-
sor error [10].

Data models that support the modeling of moving objects in a geosensor network
have been studied both in a geographic information science context as well as in
computer science. Research has been conducted on moving object databases [11, 12,
13, 14] where some of the topics include querying moving object databases [15, 16],

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 193

indexing [17], modeling moving objects over multiple granularities [18] and modeling
moving objects on a road network using geographic data technology maps [19]. The
real-time characteristic of moving objects introduces challenges for managing sensor
data, such as determining update intervals, and dealing with imprecision and uncer-
tainty regarding an object’s location. Techniques such as dead-reckoning [11], point
location management and trajectory location management [20] are some of the
proposed solutions.

Research into developing geospatial ontologies has explored the prime geospatial
categories and concepts that underlie such ontologies, highlighting, for example, basic
geographic features such as mountains, rivers, and lakes [21, 22]. These ontologies
are especially useful for supporting geographic information integration in a seamless
and flexible way [23]. Establishing links between ontologies and database content is
still a relatively new area of investigation. Delivering content for semantic web appli-
cations is encouraging further research, however, and automated methods for map-
ping between the database schema and ontologies are being explored [24, 25].

The management and integration of databases and ontologies is an additional topic
of interest for researchers. The diversity of computational resources that provide geo-
sensor data, (e.g., sensors, satellites, embedded processors, or GPS) must be properly
managed to create a fully collaborative system that offers transportation solutions
such as autonomous real-time driving, routing and navigation [9]. Our work contrib-
utes to designing next-generation transportation information architectures by propos-
ing a method for relating these geosensor databases and ontologies.

Ongoing research relating to the supporting role of ontologies for geosensor data
has been investigated, with a focus on methods for connecting geosensor network data
with ontologies that are modeled using the Protégé ontology editor [1]. Various terms
have been used to derive connecting either multiple ontologies or ontologies and da-
tabases [26]. These terms and associated definitions include: aligning: two or more
ontologies are brought into mutual agreement so that they appear consistent and co-
herent; combining where two or more ontologies that have similar elements (e.g.,
classes, attributes) are used in such a way that they act like a single unit; mapping is
the relating of similar elements from different sources with an equivalence relation
such that they appear to be integrated virtually; and merging where creating a new on-
tology is created from two or more ontologies that contain overlapping elements.

Each of these terms conveys a semantic meaning that pertains to the relation be-
tween classes or elements of different ontologies. The first of these terms, aligning
doesn’t necessarily specify if a new ontology is created, nor if the original ones per-
sist. Combining, on the other hand, recognizes the similarities between ontologies and
specifies they are treated as a single unit, but again, it is not known if this is a new
ontology. In contrast, mapping specifies that the resulting ontology appears to be in-
tegrated, perhaps implying that the parents persist while a new ‘virtual ontology’ is
created. Another relation, merging, specifies that the parent ontologies are integrated
to form a new, independent ontology.

In this research, we focus on connecting geosensor databases and ontologies, rather
than pairs of ontologies. The term linking will be used to describe this process. Link-
ing is similar to mapping, in that elements from independent databases and ontologies
will be matched in order to determine what equivalence relations exist, enabling in-
formation to be shared between them. During the process of integration, the structure

194 K. Stewart Hornsby and K. King

and elements within each source remain unchanged. We present a tool, in the form of
a tab widget implemented in Protégé, which allows a user to link the complex data
from a geosensor network and stored in a database with an ontology such that the in-
dividual structure and content of each one still persists. By applying this tool, a list of
the equivalence relations that hold between the database and ontology is automatically
generated by the system.

3 A Framework for Collecting Dynamic Geosensor Network Data
within a Transportation Domain

For this work, a fixed-length linear referencing model is used in conjunction with a
point-location approach to represent traffic movement data. A fixed-length referenc-
ing system holds spatial units constant by dividing the route into segments of uniform
length [27]. Point-location management is a straightforward approach to modeling the
location of moving objects, where a location-time pair is generated periodically for
each object and then stored in a database for future analysis [20].

The Moving Objects on Dynamic Transportation Networks (MODTN) model [28]
can be expanded to create such a geosensor framework for capturing vehicle move-
ment in a transportation network. Each object moving through the network would be
equipped with its own portable computing device that is interconnected with the net-
work through some medium such as a wireless interface. Furthermore, the network it-
self has a number of sensors distributed along the route such that they can measure the
position (and possibly distance covered by) the moving object. Whenever an object
transfers from one sensor to another, a series of location updates are triggered.

The network of sensors is distributed along a roadway so that each sensor observes
a specific number of fixed reference positions p. These reference positions are dis-
cretely numbered from +1 to +∝ along a segment of highway. At time t, only one ob-
ject can be at a specific reference position for any given lane (e.g., one object cannot
be on top of another object). To reduce the degree of parallax introduced by line-of-
sight techniques, it is assumed that pairs of sensors are placed on both sides of the
road such that the first detects traffic in one direction and the second detects traffic in
the opposite direction (Figure 1). We also assume that a single identifier references
both sensors (i.e., a pair of sensors {s1, s1a} is represented by the id s1). Traffic lanes l
are numbered sequentially from 1 to ∝. Thus, a four-lane highway may be represented
by the set {l1, l2, l3, l4}.

Data collection begins when movement is detected. A timestamp for each sensor
reading is stored in a general date/time format such as mm/dd/yyyy hh:mm:ss. From
the initial point of movement, a series of sensor readings r are collected at a fixed
time t from one another. Thus, if a moving object triggers sensor s1, a set of n readings
are collected {r1 t1, r2 t2, r3 t3…rn tn}. The positions of each individual object within the
range of the sensor (relative to a reference position) are then stored for each reading.

Each moving object is assigned a unique identifier, for example, by a mechanism
such as the broadcast of a vehicle identification number. The linear extent of the ob-
ject (length) and its midpoint (position) are stored as well. Length is calculated as a
function of the reference position interval within the sensor network (e.g., an object
length of 1.5 is equivalent to 1.5 reference position intervals).

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 195

Fig. 1. Infrastructure for collecting moving object data

The location of a moving object is encoded by obtaining the corresponding refer-
ence position in the sensor network that is closest to the midpoint of that object. If
necessary, a second relation can be constructed that explicitly defines the location as a
set of coordinates (e.g., GPS or lat-long) for each of these positions. Next, the lane in
which an object is moving must be stored. Each lane is assigned an ID and direction
that is based on one of two possible values: flow either follows the sequencing of sen-
sors (l2,+1) or is against the sequencing of sensors (l1,-1) (Figure 1).

3.1 A Database Representation for Storing Geosensor Data

In order to develop a basic framework for storing geosensor data relating to a trans-
portation network, special consideration must be given to the collection of the object
data given that it is characterized by discrete positional changes over time. Conven-
tional database management systems assume data remains constant unless it is modi-
fied. In contrast, geosensor data streams use continuous location data that are sampled
such that they meet the desired granularity requirements. This characteristic demands
frequent database updates to ensure that inaccurate and outdated data is not stored
[29]. The MODTN framework [28] is leveraged to manage these database updates
with an ID-Triggered Locations Update (ITLU) schema. Whereas in the MODTN
framework groups of sensors are positioned at route intersections, we assume sensors
are distributed uniformly along the road network. Whenever an object transfers from
one sensed position to another, a location update will be triggered to store the object’s
measured position within the geosensor database.

Additional details of the object and its associated movement are also stored within
the geosensor database. A data model describing the structure for capturing details of
a mobile object in a moving objects databases (MODs) has been proposed in [11].
Along with the object’s unique ID, attributes such as route, start location, start time,
direction, speed and uncertainty are stored. In a similar fashion, the database represen-
tation used in this work to store the geosensor positional data depends on a relation
SensorDat with attributes, objectID, sensorID, laneID, position, and time. This rela-
tion stores location readings within the sensor from the network. Details of the spatial
representation of the moving objects, on the other hand, are stored in relation ObjData
with attributes, objectId, objType and length. The attribute objType corresponds to

196 K. Stewart Hornsby and K. King

object classes in the moving objects ontology. These two relations, SensorDat and
ObjData, provide the foundation for a geosensor database that stores motion data cap-
tured within the sensor network (Figure 2).

Fig. 2. Database structure for storing moving object data

3.2 Ontologies That Model Entities in a Transportation Domain

There are many contexts from which a geospatial domain can be modeled. Each of
these contexts contributes to the development of an ontology that describes the con-
stituents of the domain. For a transportation domain, one possible context is based on
the entities that are commonly encountered on a transportation network. These entities
either move on the actual transportation network (e.g., ambulances or buses), or move
in such a way that they interact with the other entities traveling on the road network,
(e.g., cyclists). Each kind of moving entity can be modeled as a class. These classes,
their attributes, and the relations among the classes serve as a foundation for building
a transportation ontology composed of moving entities.

In this work, an ontology based primarily on the classes of entities that are com-
monly encountered moving on a road network is established. It is assumed that the
moving entities are land vehicles that travel about on a transportation network com-
posed of roadways. Train-, airplane-, and waterway-related classes will not be consid-
ered because they are outside of this scope. These moving entities are derived from
the mid-level ontology of land vehicles that are extracted from the Suggested Upper
Merged Ontology (SUMO) knowledge base developed for the IEEE
(http://sigma.ontologyportal.org). The classes, related by is_a relations, form an on-
tology of transporation devices (Figure 3). The TransportationDevice ontology has
three primary superclasses: RoadVehicle, Cycle, and RailVehicle. The class RoadVe-
hicle has subclasses EmergencyRoadVehicle, Truck, Automobile and MotorCycle.
Automobile is further subdivided into subclasses TaxiCab, Bus, and PassengerCar. It
should be noted that Bus is modeled as a subclass of Automobile based on the fact that
SUMO defines a bus to be, “An automobile designed to carry at least a dozen peo-
ple… …that can transport large numbers of passengers (i.e., dozens) at one time”.
The class EmergencyRoadVehicle has specializations, FireEngine and Ambulance.
Within the SUMO framework, PoliceCar is considered to be a subsuming mapping of
the class Automobile. However, SUMO defines an EmergencyRoadVehicle to be: “a
RoadVehicle designed for special use in emergencies.” Therefore, in this work
PoliceCar is modeled as a subclass of EmergencyRoadVehicle.

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 197

Fig. 3. A TransportationDevice ontology from the SUMO knowledge base (http://sigma.ontol-
ogyportal.com)

Although most classes of moving objects on the road network are subsumed by the
class RoadVehicle, we extend the ontology to also include other subclasses of SUMO
class LandVehicle such as Cycle and RailVehicle. This is due to the fact that bicycles
and street cars are two types of moving objects that also interact with other land vehi-
cles on the road network. For example, a streetcar interacts with other vehicles by
moving on tracks that are laid into the street.

4 Linking Geosensor Network Data and Ontologies

To maximize the benefit of geosensor data streams for a transportation system,
mechanisms need to be developed for combining and extending this data. Ontologies
provide structure for the geosensor data and allow both humans and machines to
perform reasoning and make inferences that are either more generalized or more spe-
cialized as necessary. A number of tools have been created to link ontologies by ex-
ploiting the similarities between them. For example, applications such as CRAVE
[30], OLA [31], oMAP [32], and PROMPT [33], each provide a semi-automated sys-
tem for ontology alignment. Others, such as MAPONTO [34] and VisAVis [24], pro-
vide a mechanism for connecting relational database schemas with ontologies. The

198 K. Stewart Hornsby and K. King

MAPONTO tool assists users in discovering semantic relationships that exist between
a database schema and a target ontology. The resulting output is a set of rules that ex-
press these semantic mappings. Similarly, VisAVis compares the database schema
with an ontology by employing a graphical interface that is developed within the Pro-
tégé ontology editor. VisAVis outputs the resulting relations within a new ontology
by augmenting the initial ontology with SQL references to the mapped database.

Our research builds upon the technique of mapping databases to ontologies. It
looks beyond the database schema to link the instance-level data contained within the
geosensor network dataset to the classes and attributes of a related ontology. The link-
ing of geosensor databases and ontologies provides a mechanism for combining inde-
pendent sources so that information can be shared between them. Thus, in contrast to
other methods such as merging, the linking process minimizes storage requirements
because a new database or ontology need not be created. Relations are dynamically
generated between the database and ontology from within the ontology editor Protégé
(http://sigma.ontologyportal.org, [35]). The linking mechanism we developed locates
all possible database matches by searching the classes and attributes of a related on-
tology and returns these matches as equivalence relations.

The linking process generates a list of equivalence relations by employing a series
of steps that involve specification, parsing, matching, and granularity control. First,
the user must specify the source geosensor database, the target ontology and the key
elements of each that are to be connected. Once these entities are identified, the link-
ing application iteratively selects each database value and parses the ontology struc-
ture for a potential match. If a match is found, an equivalence relation is generated.
Once a list of equivalence relations has been created, the user has the ability to choose
the desired granularity of the results, thereby choosing a higher-level and more ab-
stract understanding of their domain, or a more refined view depending on their
needs. The following sections will discuss in greater detail, a system architecture,
which employs each of these linking steps.

4.1 Specification: Identifying Key Elements for Linking

The first step in this linking process is the identification of key elements from both the
geosensor database and ontology that will be used for connecting these entities. These
key elements become possible attachment points for linking. For the geosensor data-
base, key elements may be specific tuple values or components of the database
schema such as attribute name, attribute datatype and additional attribute metadata.
Attribute metadata refers to supplementary data that further describes a relation (e.g.,
attribute definitions, search keys, etc). For an ontology, the key elements that serve as
a basis for linking are class name, attribute name and possibly instances of classes if
they are defined.

Existing systems such as MAPONTO and VisAVis map a database schema with
elements of the ontology via lexical matches. In this work, we focus on an alternative
method of linking, where individual tuple values from the geosensor database are
linked with the classes, attributes and instances found within a related ontology. This

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 199

is a type of deep linking where the attachment points are the instance data contained
within the geosensor database rather than its schema. An example of this deep linking
process is provided later in section 4.3.

In this linking application, two possible options for filtering source data from the
geosensor database are available. The first option transpires when the user does not
specify which attribute names they are most interested in linking. If no attribute
names are specified, the linking application assumes that all attributes are to be proc-
essed for possible matches. The second option leads to a reduction of the source data
per the user’s choice of attribute names. This is achieved by applying the relational

projection operator, π, via an internal application query. This reduces the search
space so that only values of interest from the geosensor database are parsed for se-
mantic equivalence. For example, the ObjData relation discussed in section 3.1 con-
tains three attributes: objID, objType and length. The linking application, by default,
will process instances from all three attributes for corresponding ontology matches.
However, a user has the ability to declare that matches only be found for a specific at-
tribute (e.g., objType). For the relation ObjData, this reduces the number of database
instances to be processed by approximately sixty-six percent. Thus, the ability to
specify which attributes are processed for matches provides the user with a mecha-
nism to filter the results and reduce the processing time of the linking application.

4.2 Parsing: Searching for Linking Elements

To facilitate linking, an algorithm has been designed to iterate through the ontology
structure looking for linking elements (e.g., class names, attribute names, and instance
values). We leverage the parsing conventions offered by the Protégé-OWL advanced
programming interface (i.e., API). The Protégé-OWL API is an open-source Java li-
brary that allows programmers to create and manipulate source files that have been
developed using the Web Ontology Language (OWL) and Resource Description
Framework (RDF). Within the API, class names that are stored within the target on-
tology are identified by making calls to the getSubclasses() routine. This routine re-
turns a collection of descendent classes for any given class.

A simple recursive function is used to traverse the class hierarchy of the ontology
(Figure 4). The getSubclasses() command has a Boolean parameter, that if set to true,
will not only return the direct subclasses, but also their children, grandchildren, etc. In
order to facilitate the individual examination of each subclass within the ontology,
this flag is set to false and traversal of the ontology is controlled by the recursive
function that has called it. As soon as a collection of descendant subclass names has
been stored, additional logic can be employed to make use of this data.

This recursive function can be modified to discover additional characteristics of
each class such as attribute names and instances. For example, the function getTem-
plateSlots() can be used to retrieve a collection of attributes for a given class (attrib-
utes are referred to as slots within Protégé). Additionally, a collection of available
instances for each class can be returned with the getInstances() routine. Both of these
functions can be included in the body of the parseClasses() function to retrieve addi-
tional information about each class.

200 K. Stewart Hornsby and K. King

Fig. 4. Recursive function to parse an ontology by using Protégé-OWL API calls

4.3 Matching: Finding Equivalence Relations between a Database and Ontology

During the parsing process, the linking application must determine if the identified
elements from the ontology and geosensor database share some similarity, such that
an equivalence relation is defined. The matching process begins with the database tu-
ple value serving as the pattern (i.e., character sequence) for which searched. Possible
candidates for a match will be sought from the class names, attribute values or in-
stances of the related ontology. For example, consider the relation ObjData that con-
tains the attribute instance taxicab (Figure 5). The linking mechanism locates all
occurrences of the instance taxicab by searching every class name and attribute name
of the related TransporationDevice ontology. As a result, P-C pairs that include, for
example, (taxicab | transportationdevice), (taxicab | vehicle), and (taxicab | landvehi-
cle) would be generated during this comparison. Of these pairs, the only equivalence
relation to be defined would be (taxicab | taxicab).

To find an equivalence relation, each tuple value of the database is compared to all
available elements of the ontology. Therefore, the total number of iterations of this al-
gorithm will be dN*oN, where dN is the number of tuple patterns and oN is the num-
ber of ontology candidates. The algorithm processes each pattern and candidate as an
independent pair to determine if the pair is a valid attachment point. The entire set of
pattern-candidate (P-C) pairs is formally represented as: {P1C1, P1C2… P1CoN, P2C1,
P2CoN… PdNCoN}.

The processing of these P-C pairs for possible matches is accomplished with a
standard semantic comparison. Lexical pattern matching is applied to each potential
pair of geosensor database and ontology terms. To simplify the matching process,
each possible pattern and match pair is normalized by ensuring that their constituent

private static void parseClasses(RDFSClass cls) {

 cls.getName();

 for (Iterator i = cls.getSubclasses(false).iterator(); i.hasNext();)

 {

 //Store the retrieved subclass names

 RDFSClass subclass = (RDFSClass) i.next();

 //Process the retrieved subclass names and-or data

 .

 .

 .

 //Retrieve additional subclasses

 parseClasses(subclass);

 }

}

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 201

Fig. 5. Linking a geosensor database and the TransportationDevice ontology

characters are all lower case. Making the linking algorithm case insensitive ensures
that the maximum number of possible matches is returned by the application.

The application user is provided with four pattern matching options that are used to
influence the linking mechanism between the geosensor database and ontology. These
options are: direct, prefix, suffix and inclusion. The first linking option, direct, utilizes
a straightforward one-to-one comparison mechanism that is analogous to a logical
equality operator. An example of a successful direct comparison would be an equiva-
lence relation between the database value ambulance and the ontology class name
ambulance.

The remaining three matching options employ a wildcard character to search for a
range of candidate values. Similar to other programming languages, the character *
can be substituted for a string of zero or more characters within the candidate. When
determining the semantics of these matching options, the position of the pattern
within the candidate should be considered. For instance, the prefix option would pro-
duce an equivalence relation for any expression of the form [pattern] = [pattern]*.
Thus, a prefix based match would be generated between the tuple instance police and
class name policecar. In contrast, the suffix option produces equivalence relations for
expressions of the form [pattern] = *[pattern]. The tuple instance cyclist and class
name bicyclist would satisfy the requirements of a suffix-based match. Alternatively,

202 K. Stewart Hornsby and K. King

inclusion is a concatenation of both the prefix and suffix matching options. An inclu-
sive match searches for expressions that comply with the specification [pattern] =
[pattern]. A relation between the tuple instance road and class name emergency-
roadvehicle illustrates an inclusive match.

The cardinality of these matches is represented by one of three forms. Several
matches may be generated for a single source entity, that is, a tuple value can be
linked to multiple ontology elements (i.e., 1:n). The converse is also true; several
source entities can be linked to a single target entity (i.e., n:1). However, it is not re-
quired that every tuple within the source database form an equivalence relation with
some element of the related ontology (i.e., 1:0).

In future work, the definition of an equivalence relation may become more relaxed.
Although we have assumed that a strict semantic match is required, we anticipate that
this constraint will be modified to include patterns that support inexact or similar
matches as well as spatial and temporal matches between the geosensor database and
an ontology. For example, a set of equivalence relations may be derived from coordi-
nate data and an ontology containing geometric shapes and patterns.

5 A Tab Widget for Linking a Geosensor Database and Ontology

The framework that has been discussed for linking a geosensor database with an on-
tology can be drawn upon to extend existing ontology editors. Perhaps the most sig-
nificant advantage of extending an ontology editor such as Protégé is the ability to
leverage existing functions that are capable of manipulating ontology source files.
Additional benefits include a standardized development platform, and a programming
interface that enforces a basic design rationale.

The mechanism used for linking within the Protégé editor, is a plug-in that is referred
to as a tab widget. A tab widget is essentially an extension of the core Protégé ontology
editor. It is a simple user interface that appears in the main window of the Protégé editor
as a clickable tab. The new tab for the linking application is positioned alongside other
system tabs such as Classes, Properties, Individuals and Forms (Figure 6).

The standard tab widgets within Protégé, utilize a frame to arrange and display data
about the ontology and its components. Each frame is composed of a widget body that
contains a series of panes that contain various components used for sharing informa-
tion and interfacing with the application user (Figure 6). These components can in-
clude list boxes, buttons, tables, text fields and other objects commonly found on
standard graphical user interfaces. In the next section, we illustrate the look and func-
tionality of the linking widget with an example from the transportation domain that
was discussed earlier.

5.1 Structure of the Geosensor Database-Ontology Linking Tab

The tab widget that has been developed for the linking application consists of a single
pane that provides several objects with which the user must interact. Utilizing a tab
widget is beneficial because Protégé provides an intuitive mechanism for viewing and
parsing the structure of the target ontology. Without these advantages, the OWL-RDF

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 203

Fig. 6. Features of a Protégé tab widget

definitions of the ontology are cryptic for users to visualize and cumbersome to parse
with programming code.

To use the linking tool, the Protégé ontology editor must first be launched. Within
the ontology editor, the user selects and imports the desired ontology, for example,
the SUMO TransportationDevice ontology. Once the ontology has been opened
within Protégé, the user can view the associated structures using the standard tab wid-
gets provided by the ontology editor. For example, to inspect the class hierarchy, the
tab OWL classes should be selected.

Before the linking tab widget can be selected, the source files must first be copied
to the default plug-ins folder of Protégé. The tab widget is loaded within the Protégé
GUI by choosing OWL from the main menu and selecting Preferences from the list of
available choices. The Tabs option will then provide a checkbox for enabling the link-
ing tab widget. Once the widget becomes visible, the user will see a number of objects
that are used to specify linking parameters. Proper navigation of these parameters is
facilitated by the organization and layout of the graphical user interface (Figure 7).

5.2 Using the Database-Ontology Linking Tab

The core components of the linking interface are a set of objects that specify the data-
base, ontology, matching and results criteria. The user must first identify the data
source name for the geosensor database containing the moving object data, (it is as-
sumed that an ODBC connection to this database has already been created). A subrou-
tine within the linking widget verifies the validity of the database connection and then
populates a list box object with the name of each relation (e.g., ObjData and Sensor-
Dat). This list-box is used to indicate which relation contains the data that is to be ex-
tended via the linking tool. Once the desired relation is selected, a second list-box is

204 K. Stewart Hornsby and K. King

Fig. 7. Tab widget implementation within Protégé for database-ontology linking

populated with the attributes available for that relation. When one or more of these at-
tributes are selected, the instance values can be previewed by scrolling through a third
list-box. This enables the user to verify the desired data has been selected prior to
running the linking tool. For example, if the ObjType attribute is selected, this list-box
would display instance values such as Ambulance, Police, Taxi and Cyclist.

The user can proceed to choose the matching options after the instance-level values
are selected. These options control the logic used for matching database instances and
ontology class names. Future versions will also provide control over which additional
ontology elements are linked (e.g., attribute names and available instances). One of
four linking methods can be specified within the interface. These methods are direct,
prefix, suffix and inclusion as discussed in section 4.3. For this example, we will elect
inclusion, where each database pattern is matched with corresponding ontology ele-
ments of the form *pattern*.

The decision to return matches (i.e., equivalence relations), non-matches or all
comparisons (both matches and non-matches) is another feature of the linking inter-
face. It is anticipated that the matches option would be used most frequently as this
option will extend the geosensor datastream knowledge. However, the non-matches
option may also be useful in situations where one wants to create a list of all database

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 205

terms that do not have a corresponding equivalence relation within the target ontol-
ogy. Such a comparison may be performed, for example, by a domain expert that is
looking to extend the knowledge contained within the TransportationDevice ontol-
ogy. In rare cases, one may want to view the comprehensive set of database instances
and any additional corresponding equivalence relations that are found. This list could
be analyzed to perform further data analysis between the matching and non-matching
terms.

Once the required inputs have been specified, the output generated by the linking ap-
plication is displayed to the user within the results window. Each equivalence relation is
shown in the form <dbase> :: <ontology>. If the user requests to see non-matches, only
the database value is returned. Examples of equivalence relations generated from the
linking of the ObjData relation and the TransportationDevice ontology would be {ambu-
lance :: ambulance}, {police :: policecar}, and {taxi :: taxicab}.

In addition to displaying the equivalence relations, a statistical analysis of the link-
ing results is provided as well. The statistics function simply compares the number of
database values processed to the number of database entries that had at least one cor-
responding ontology match. It should be noted that this statistical analysis is influ-
enced by the type of results that are returned. The statistical calculation may be based
upon the number of matches returned, the number of non-matches returned or the
number of matches and non-matches (always 100%). This value provides the user
with a simple way to quantify the success of the linking algorithm.

A more complex linking scenario may require a combination of both the ObjData
and SensorDat relations. To support this, an optional SQL query is used to specify
any valid relation or composition of relations instead of selecting one from the first
list box. For instance, a query is employed to determine what types of vehicles are lo-
cated between sensor positions 234 and 468? This query requires positional data from
the SensorDat relation and the type of object from the ObjData relation. It is ex-
pressed with the following statements:

SELECT objType, position

FROM o as objData, s as sensorDat

WHERE o.objid = s.objid

AND s.position >= 234

AND s.position <= 468;

In addition to displaying the matching terms of a geosensor database and an ontol-
ogy, a feature has been added that allows a user to exploit the ontology further by
coarsening or refining the desired granularity of the equivalence relations. The search
depth slider is the mechanism used to augment the linking results. Increasing the
search depth modifies the equivalence relations by returning ontology classes that are
more specialized by finding subclasses. Conversely, decreasing the search depth re-
turns equivalence relations that are more generalized by locating the subsuming
classes. For example, if the equivalence relation {policecar :: policecar}is augmented
through generalization, the linking application returns {policecar :: emergencyroad-
vehicle} where emergencyroadvehicle is coarser than policecar (Figure 8). If this
equivalence relation is generalized further, the resulting output becomes { emergency-
roadvehicle :: roadvehicle}. In addition to the original equivalence relations, the new
generalized and specialized elements of the ontology are displayed to the user.

206 K. Stewart Hornsby and K. King

Fig. 8. Generalization of the ontology class policeCar

The first application of the slider reduces the set of matching classes from three
(i.e., ambulance, policecar, taxicab) to two (i.e., emergencyroadvehicle, automobile).
Further generalization reveals that all three original classes are subsumed by the class
roadvehicle. Such generalizations would provide answers to user questions such as,
are there any emergency road vehicles between position 234 and 468? The conven-
tional geosensor datastream information stored within the MovingObj database would
not be able to answer this question because the datastream by itself does not have the
detail necessary for semantic reasoning. However, by linking the MovingObj database
with the TransportationDevice ontology, and then augmenting the results by general-
izing the data, such semantic descriptions and conclusions can be formed.

6 Conclusions and Future Work

This work has presented a method for linking geosensor databases with ontologies. To
support this research, a geosensor data collection framework must first extract posi-
tional data for objects moving within a transportation network. The streaming posi-
tional data collected by the sensors is stored within a geospatial database. Details of
the spatial representation as well as the sensed location of the moving object are col-
lected. However, these data-streams by themselves lack the detail necessary for se-
mantic reasoning about characteristics that are specific to each object. Ontologies
such as the SUMO classification of transportation devices are leveraged to extend
geosensor data streams by supplying semantic descriptions that become the founda-
tion for discovering similarities between moving objects.

The focus of this work is the development of a mechanism for linking the geosensor
database with an ontology. This mechanism is created as a tab widget within the ontology
editor Protégé. The widget returns associations by locating matches between the instance
data contained within the geosensor database and the class names from the related trans-
portation device ontology. Matches are returned as a set of equivalence relations that are
augmented further by employing the specialization and generalization knowledge of the

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 207

ontology to provide additional perspectives of the geosensor data. Non-matches as well
as all comparisons (i.e., both matches and non-matches) are also returned for the user.
These perspectives provide additional details for geosensor data which are necessary for
semantic reasoning and inference.

This linking mechanism will assist next-generation information systems in under-
standing, modeling and indexing moving objects. To further support such systems, fu-
ture research will focus on spatial pattern matching where, for instance, an ontology
of geometric representations can be used to augment a positional database. Such a
system would facilitate the specialization and generalization of geometric shapes to
increase or decrease the complexity of their spatial representation. In addition, meth-
ods for linking additional elements of a database schema with ontology class names,
attribute names, and instance values are also being investigated.

Acknowledgments

Kathleen Stewart Hornsby’s research is supported by a grant from the National Geo-
spatial-Intelligence Agency HM1582-05-1-2039.

References

[1] The Protégé Ontology Editor and Knowledge Base Framework,
http://protege.stanford.edu/

[2] Stefanidis, A., Nittel, S. (eds.): GeoSensor Networks, p. 296. CRC Press, Boca Raton
(2005)

[3] Pfoser, D., Jensen, C., Theodoridis, Y.: Novel approaches in query processing for moving
object trajectories. In: VLDB, pp. 395–406 (2000)

[4] Wolfson, O., Chamberlain, S., Kalpakis, K., Yesha, Y.: Modeling moving objects for lo-
cation based services. Infrastructure for Mobile and Wireless Systems 2001, 46–58 (2001)

[5] Stefanidis, A., Eickhorst, K., Agouris, P., Partsinevelos, P.: Modeling and comparing
change using spatiotemporal helixes. In: Proceedings of the Eleventh ACM International
Symposium on Advances in Geographic Information Systems, New Orleans, Louisiana,
USA, pp. 86–93 (2003)

[6] Meka, A., Singh, A.: DIST: a distributed spatio-temporal index structure for sensor net-
works. In: Proceedings of the 14th ACM International Conference on Information and
knowledge management, CIKM 2005, Bremen, Germany, pp. 139–146 (2005)

[7] Pfoser, D., Jensen, C.: Trajectory indexing using movement constraints. GeoInfor-
matica 9, 93–115 (2005)

[8] Chen, J., Meng, X., Guo, Y., Grumbach, S., Sun, H.: Modeling and predicting future tra-
jectories of moving objects in a constrained network. In: Proceedings of the 7th Interna-
tional Conference on Mobile Data Management. MDM 2006, p. 156. IEEE Computer So-
ciety, Los Alamitos (2006)

[9] Dillenburg, J., Nelson, P., Wolfson, O., Yu, O., Sistla, A., McNeil, S., Ouksel, A., Xu, B.,
Ben-Arie, J.: Applications of a transportation information architecture. In: IEEE Interna-
tional Conference on Networking, Sensing and Control, vol. 1, pp. 480–485 (March 2004)

[10] Cao, H., Wolfson, O.: Nonmaterialized Motion Information in Transport Networks. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer, Heidel-
berg (2004)

208 K. Stewart Hornsby and K. King

[11] Wolfson, O., Jiang, L., Sistla, A., Chamberlain, S., Rishe, N., Deng, M.: Databases for
Tracking Mobile Units in Real Time. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999.
LNCS, vol. 1540, pp. 169–186. Springer, Heidelberg (1998)

[12] Forlizzi, L., Güting, R., Nardelli, E., Schneider, M.: A data model and data structures for
moving objects databases. In: Proceedings of the 2000 ACM SIGMOD international Con-
ference on Management of Data, Dallas, TX USA, pp. 319–330 (2000)

[13] Güting, R., Schneider, M.: Moving Objects Databases. Morgan Kaufmann Publishers,
San Francisco (2005)

[14] Rodríguez-Tastets, M.: Moving Objects Databases. Encyclopedia of Database Technolo-
gies and Applications, 377–385 (2005)

[15] Güting, R., Böhlen, M., Erwig, M., Jensen, C., Lorentzos, N., Schneider, M., Vazirgian-
nis, M.: A foundation for representing and querying moving objects. ACM Transactions
on Database Systems 25, 1–42 (2000)

[16] Xie, R., Shibasaki, R.: A unified spatiotemporal schema for representing and querying
moving features. SIGMOD Record 34, 45–50 (2005)

[17] Pfoser, D., Jensen, C.: Indexing of network constrained moving objects. In: Proceedings
of the 11th ACM international Symposium on Advances in Geographic information Sys-
tems 2003, pp. 25–32 (2003)

[18] Hornsby, K., Egenhofer, M.: Modeling moving objects over multiple granularities. An-
nals of Mathematics and Artificial Intelligence 36, 177–194 (2002)

[19] Vazirgiannis, M., Wolfson, O.: A Spatiotemporal Model and Language for Moving Ob-
jects on Road Networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)

[20] Wolfson, O.: Moving objects information management: the database challenge. In:
Halevy, A.Y., Gal, A. (eds.) NGITS 2002. LNCS, vol. 2382. Springer, Heidelberg (2002)

[21] Mark, D., Skupin, A., Smith, B.: Features, Objects, and Other Things: Ontological Dis-
tinctions in the Geographic Domain. In: Montello, D.R. (ed.) COSIT 2001. LNCS,
vol. 2205, pp. 489–502. Springer, Heidelberg (2001)

[22] Smith, B., Mark, D.: Geographical categories: an ontological investigation. International
Journal of Geographical Information Science 15(7), 591–612 (2001)

[23] Fonseca, F., Egenhofer, M., Agouris, P., Câmara, G.: Using Ontologies for Integrated
Geographic Information Systems. Transactions in GIS 6(3), 231–257 (2002)

[24] Konstantinou, N., Spanos, D.-E., Chalas, M., Solidakis, E., Mitrou, N.: VisaVis: An ap-
proach to an intermediate layer between ontologies and relational database contents. In:
Proceedings of the International Workshop on Web Information Systems Modeling:
WISM 2006 (2006)

[25] Yuan, A., Mylopoulos, J., Borgida, A.: Building Semantic Mappings from Databases to
Ontologies. In: Proceedings of AAAI (2006)

[26] Klein, M.: Combining and relating ontologies: an analysis of problems and solutions. In:
Workshop on Ontologies and Information Sharing, IJCAI 2001, Seattle, USA (August
2001)

[27] Miller, H., Shaw, S.: Geographic Information Systems for Transportation, p. 480. Oxford
University Press, Oxford (2001)

[28] Ding, Z., Guting, H.: Managing moving objects on dynamic transportation networks. In:
Proceedings of the 16th international Conference on Scientific and Statistical Database
Management (SSDBM 2004). SSDBM, pp. 287–296. IEEE Computer Society, Los
Alamitos (2004)

[29] Saltenis, S., Jenson, C., Leutenegger, S., Lopez, M.: Indexing the positions of continu-
ously moving objects. ACM SIGMOD 2000, 285–289 (2000)

 Linking Geosensor Network Data and Ontologies to Support Transportation Modeling 209

[30] Gkoutos, G., Green, E., Greenaway, S., Blake, A., Mallon, A., Hancock, J.: CRAVE: A
database, middleware and visualization system for phenotype ontologies. Bioinformat-
ics 21(7), 1257–1262 (2004)

[31] Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology alignment with OLA. In:
Third EON Workshop. Third International Semantic Web Conference, pp. 333–337
(2004)

[32] Straccia, U., Troncy, R.: oMAP: Combining classifiers for aligning automatically OWL
ontologies. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z.
(eds.) WISE 2005. LNCS, vol. 3806, pp. 133–147. Springer, Heidelberg (2005)

[33] Fridman, N., Musen, M.: PROMPT: Algorithm and tool for automated ontology merging
and alignment. In: Proceedings of the Seventennth National Conference on Artificial In-
telligence and Twelfth Conference on Innovative Application of Artificial Intelligence,
pp. 450–455. AAAI Press / The MIT Press (2000)

[34] An, Y., Mylopoulos, J., Borgida, A.: Building semantic mappings from databases to on-
tologies. In: Proceedings, The Twenty-First National Conference on Artificial Intelligence
an the Eighteenth Innovative Applications of Artificial Intelligence Conference. American
Association for Artificial Intelligence (AAAI) (2006)

[35] Niles, I., Pease, A.: Towards a Standard Upper Ontology. In: Welty, C., Smith, B. (eds.)
Proceedings of the 2nd International Conference on Formal Ontology in Information Sys-
tems (FOIS-2001), Ogunquit, Maine, October 17-19, 2001 (2001)

Applications

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 213–238, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Operational Real-Time Ocean Sensor Network
in the Gulf of Maine

Neal R. Pettigrew1, Collin S. Roesler2, Francois Neville3, and Heather E. Deese1

1 School of Marine Sciences, University of Maine, Orono, ME 04469 USA
2 Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, USA

3 Spatial Information Engineering, University of Maine, Orono, ME 04469 USA

Abstract. The Gulf of Maine Ocean Observing System (GoMOOS) was estab-
lished in the summer of 2001 as a prototype real-time observing system that
now includes eleven solar-powered buoys with physical and optical sensors,
four shore-based long-range HF radar surface current systems, circulation and
wave models, satellite observations, and hourly web delivery of data.

The Gulf of Maine is a harsh operational environment. Its winter storms
pose severe challenges including the build up of sea ice on buoy sensors, super-
structure, and solar panels, and in summer its productive waters present severe
biofouling problems that can affect the optical sensors. The periods of most
difficult operations often coincide with periods of greatest data value in terms
of marine safety, search and rescue, and monitoring biological productivity.
GoMOOS scientists and engineers continue to refine system designs and opera-
tional procedures to moderate the environmental stresses on the sensors and
systems.

Keywords: Ocean Observing Systems, Sensor networks, real-time, GoMOOS,
neural networks, ocean optics, CODAR, Gulf of Maine.

1 Introduction

The Gulf of Maine Ocean Observing System (GoMOOS) is a comprehensive proto-
type integrated coastal ocean observing system. It serves a broad array of real-time
oceanographic and marine meteorological data and data products to scientists, state
and federal regulators, the National Weather Service, both the US and Canadian Coast
Guards, the National Data Buoy Center, educators, regional natural-resource manag-
ers, the Gulf of Maine fishing and maritime industries, local airports and airlines,
sailors, and the general public. As the first of the truly operational coastal observing
systems, GoMOOS has also served as a proving ground for procedures, protocols, and
technologies, as well as an example of meaningful integration of sensors, platforms,
and predictive models.

In addition to the hourly operational data delivery, GoMOOS provides an archive
of data and model output that are significantly advancing the scientific understanding
of the Gulf of Maine as a physical and ecological system. Over the nearly seven years
of operation, the GoMOOS data have not only revealed the seasonal and interannual

214 N.R. Pettigrew et al.

variability of the circulation and physical properties of the Gulf of Maine, in some
locations they have provided the first meaningful baseline data. In addition, the Go-
MOOS optical measurements have provided the first long-term concurrent measure-
ments of chlorophyll fluorescence, spectral phytoplankton absorption, and particle
size that has permitted novel time series records of phytoplankton blooms and species
succession. The system also provides a “window on the Gulf” to educators, students,
and the general public that performs an important educational function.

GoMOOS is an integrated ocean observing system that can be thought of as con-
sisting of four major subsystems: the data acquisition subsystem; the data handling,
processing, and archiving subsystem; the system of numerical nowcast and forecast
models; and a web-based data distribution/presentation subsystem. The acquisition
system includes a real-time buoy array, an array of land-based long-range Coastal
Ocean Dynamics Applications Radar (CODAR) installations, and a satellite receiving
station. The data handling system includes real-time QA/QC algorithms, data proc-
essing, calibration, and data archives that include sensor inventories, deployment
histories and calibration records in addition to the data records themselves. The nu-
merical modeling system [1] consists of an application of the Princeton Ocean Model
(POM) for circulation and hydrographic conditions, and a high-resolution SWAN
wave model. Both models use output from the Eta mesoscale atmospheric forecast
model run by the National Center for Environmental Prediction (NCEP).

1.1 The Oceanographic Domain of the Gulf of Maine

The GoM is a complex and very productive marine ecosystem. The level of primary
(phytoplankton) production, which forms the base of the marine food chain, is high
relative to other continental shelf and marginal sea environments. Fisheries produc-
tion in the GoM is also high. In particular, Georges Bank, which separates the interior
GoM from the northwestern Atlantic Ocean, is one of the most productive fishing
regions in the world. These high levels of production are believed to be due to a com-
bination of nutrient delivery via the deep inflow of nutrient-rich slope waters through
the Northeast Channel, which cuts between Georges Bank and Browns Bank, and
strong tidal mixing that effectively mixes the nutrients up into the lighted (euphotic)
zone were they are available to fuel phytoplankton blooms.

Under modern climate conditions, the Gulf of Maine is a region of strong physical,
chemical, and biological gradients. During summer conditions there is a strong con-
trast in upper water properties from warmer, fresher, and lower nutrients in the
southwest to colder, saltier, and higher nutrients in the northeast (e.g. Pettigrew et al.,
2005, www.gomoos.org). There is also a clear southwest to northeast increase in tidal
amplitude, and thus the degree of vertical mixing. A surface temperature front, which
trends offshore from mid coastal Maine in the vicinity of Penobscot Bay, often devel-
ops that in summer separates the warmer surface waters of the southwestern region
from the colder waters of the northeastern gulf [2].

The strong southwest-to-northeast gradients in physical processes and water prop-
erties in the GoM are mirrored in the seasonal patterns of phytoplankton blooms and
the species composition. Spring blooms propagate from southwest to northeast, fol-
lowing the pattern of thermally-induced stratification, while fall blooms propagate
from northeast to southwest in response to cooling and convection. Under present

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 215

climatic conditions, we find within the Gulf of Maine, the northern coastal geographi-
cal limit of many temperate species and the southern coastal limit of many boreal
species [3]. The affected temperate species are limited to the southwestern gulf, and
conversely, the affected boreal species are limited to the northeastern GoM. These
circumstances make the GoM an area that is biologically sensitive to the climate
change signals since modest changes temperature can result in large swings of the
species composition (ranging from phytoplankton species to commercial fish species)
within the gulf. Thus the GoM may be expected to be a region in which the early
effects of climate change will be manifest, and a region in which ocean observing
efforts may foretell events of great ecological and commercial significance.

The circulation and physical processes in the GoM are dominant factors that de-
termine the overall character of the ecosystem. In effect, the physical oceanography of
the GoM is the fluid-mechanical regime within which the biochemical components of
ecosystem are embedded. However, despite recognition of the importance of the
physical regime, little is known in detail about even the most fundamental physical
processes in the GoM, including its circulation.

The GoM is known to have a cyclonic general circulation pattern [4,5], and its
shelf regions are characterized by a complex, variable, and interconnected coastal-
current system that is best developed in the summer season [5,6]. A schematic dia-
gram of the near-surface summer circulation, shown in Fig. 1 [6], depicts a pair of
cyclonic (anti-clockwise) gyres over the basins in the eastern Gulf, and a partial sepa-
ration from of the coastal current from the shelf at a mid-coast location in the vicinity
of Penobscot Bay. Even this somewhat complex pattern is highly simplified in both
time and space.

Recent moored current measurements and hydrographic surveys from the Ecology
and Oceanography of Harmful Algal Blooms (EcOHAB) experiment in the Gulf of
Maine show marked interannual variability in the degree of separation versus
through-flow that occurs along the coast [6]. This seasonal and interannual variability
in the connectivity of the eastern (EMCC) and western (WMCC) branches of the
coastal current system is expected to have far-reaching consequences with regard to
the transport of nutrients, planktonic larvae, harmful algal blooms, and coastal pollu-
tion. All of these fluxes are critical factors in determining both short and long-term
variations in the state of the GoM ecosystem. GoMOOS moorings I and E, which
are, respectively, in the EMCC and WMCC, have revealed strong seasonal compo-
nent to this connectivity. The two branches generally merge each fall and separate
each spring. The historic lack of long-term direct current measurements made within
the Gulf of Maine Coastal Current (GMCC), and at key inflow and outflow locations
near the open boundary, has significantly hindered our understanding of both the
physical and biological oceanography of the GoM.

The surface inflow into the GoM of relatively fresh Scotian Shelf water (SSW)
from the Atlantic seaboard of Nova Scotia, and the deep inflow through the Northeast
Channel of relatively warm, salty, nutrient rich slope waters (SLW) are the two most
important inflows into the GoM. The large buoyancy input of the SSW accounts for
more of the annual freshwater budget of the GoM than the combined inflow of all the
rivers that drain into its confines. The density contrast between these relatively fresh
surface and intermediate SSW waters with the deep salty slope SLW waters survives

216 N.R. Pettigrew et al.

Fig. 1. Schematic diagram of the summer surface circulation of the Gulf of Maine (from Petti-
grew et al., 2005)

the vigorous tidal mixing and winter convection in of the eastern GoM. The geostro-
phic adjustment processes in response to these persistent density contrasts engender
the cyclonic general circulation pattern of the GoM. The monitoring of these inflows
has long been recognized as a prerequisite to any credible Ocean Observing System,
as well as to the understanding the large interannual and decadal variability that char-
acterize the hydrographic structure and the fisheries yields of the GoM.

The lack of biological time-series measurements has been even more limiting than
the paucity of physical time-series measurements. Prior to the implementation of the
GoMOOS, there had been no significant time-series measurements that reflect phyto-
plankton biomass, other than those associated with shipboard programs in which short
time series at a single station or quasi-synoptic geographical surveys were imple-
mented (e.g. GLOBEC, ECOHAB), ;and remotely-sensed chlorophyll, which in this
region of high riverborne colored dissolved organic matter (CDOM) has high error,
particularly near the coast. The GoMOOS array has, for the first time, enabled hourly
estimates of phytoplankton biomass, and photosynthetically available radiation (PAR)
at multiple buoy locations within the euphotic zone.

Rivers serve important roles in the Gulf of Maine, from the perspectives of the
quantity of freshwater entering the system, forcing of buoyancy-driven coastal flow,
and the inorganic nutrient and organic material fluxes into the coastal waters. These

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 217

fluxes are important factors that influence coastal algal blooms (including harmful
algal blooms of the genus Alexandrium, [5,6] and the sequestering of particulate and
dissolved carbon and nitrogen in the deep basins of the Gulf of Maine [7]. The optical
packages that we have deployed on selected moorings provide us with the capability
to determine both the concentration of the particulate and dissolved matter, and the
composition and size distribution of that material.

2 The Ocean Observing System

2.1 GoMOOS Real-Time Buoy Designs

The GoMOOS Data Buoy System design arose from the central concept of a moder-
ate sized, stable, unsinkable, solar-powered platform with real-time telemetry and
onboard data processing capabilities. The GoMOOS design incorporates many sig-
nificant departures from the buoy designs used previously in the Gulf of Maine for
year-round operation. Funding constraints and lean operational budgets dictated that
the buoys be much cheaper and more compact than the three-meter discuss buoys
deployed by the National Data Buoy Center (NDBC) in the GoM region. The smaller,
lighter buoys allow much smaller (and more economical) vessels to be used for de-
ployment and recovery. At the same time, while required to be smaller, cheaper, and
lighter than the NDBC buoys, the GoMOOS buoys had to be capable of handling an
order of magnitude greater data volume, and an order of magnitude more sensors,
while still withstanding the rigors of the Gulf of Maine winters.

The “workhorse” of the GoMOOS buoy array is a multi-chinned two-meter discus
buoy with flotation made of closed-cell Surilin foam. There is a central water-tight
instrument well, made of aluminum, which houses the buoy electronics including the
voltage regulation system, solar storage batteries, and the data-logger/controller. The
buoy is designed to survive knockdown and compression due to forced submergence,
it monitors its own position, and sends alarms if it detects it is off position, has a leak
in the electronics well, or has data logging problems. The buoy is solar-powered, has
dual cellular/iridium and GOES satellite telemetry systems for hourly data telemetry,
and has room for expansion in its both power and electronic systems. Some of the
design details of the GoMOOS buoy system have been previously described [7].

The basic GoMOOS buoy platform is used in two distinct configurations: the shelf
mooring, and the basin mooring. The schematic diagrams of the GoMOOS shelf and
basin moorings are shown in Fig. 2A and 2B. All buoys are mechanically identical
and carry a surface sensor payload of anemometers (for wind speed and direction), air
temperature, atmospheric pressure, and visibility (fog). A subset of the buoys (the
optics-intensive buoys) also measure solar insolation.

The majority of the GoMOOS buoys are shelf moorings of the slack chain type
shown in Fig. 2A. These mooring designs have proven very reliable when deployed
in the coastal GoM. In water depths of 100 or less, the scope (or slack) of the moor-
ing is provided by approximately 60 m of 5/8 inch mooring chain that connects the
5/16 inch jacketed steel mooring cable to a 2700 lb anchor. Under slack water low
tide conditions, approximately 10 m of the chain is suspended above the bottom and

218 N.R. Pettigrew et al.

the remaining 50 m lies on the bottom. During high water, high wave, or high flow
conditions the chain pile is picked up by the buoy as needed to adjust to the lift and
drag. An advantage of this simple mooring design is that the anchors are recovered
with the buoy, and no acoustic release mechanism is required.

At the deeper offshore deployment sites we use the compliant mooring system
shown in Fig. 2B. In this design, the scope is provided by elastic tethers that hold the
buoy under tension and stretch in reaction to high waves, tides, or drag from strong
currents. The chief advantage this design in the GoM is that the “watch circle” of the
buoy around its anchor is reduced. In a region that is heavily fished, the reduced
watch circle makes it less likely that draggers will work between the anchor and the
buoy, and thus less likely that the buoy will be cut, dragged off station, and its sen-
sors damaged. Since the fishing activity is greater in the offshore waters of the GoM,
GoMOOS uses the elastic tether mooring systems in these locations. The elastic tether
also makes the surface buoy behave in a more “spar like” fashion in a wave field: that
is, with less rolling of the surface float. A disadvantage of the elastic tether design is
that the tethers are expensive, need to be replaced approximately annually, and must
be used in conjunction with expensive acoustic release mechanisms that leave the
anchors on the bottom.

We have recently designed an inshore “mini” buoy that uses on the slack chain
mooring configuration. This buoy has been designed to be deployed and recovered
using small work boats of ~ 30 ft or greater, and to operate in the small bays and estu-
aries of the GoM where the storm waves are less than approximately 2 m. In terms of
telemetry, data handling, and sensor payload the nearshore buoy is the equivalent of
the full-size GoMOOS buoy; without the room for future expansion in the instrument
(electronics) well. However it is designed to survive encounters with ice flows that
are common in GoM estuaries, but virtually unheard of in the open gulf. The buoy
schematic is shown in Figure 2C.

2.2 Local Sensor Networks

The GoM is a diverse physical and ecological environment and the monitoring system
reflects this diversity. Never-the-less, each mooring is equipped with a standard suite
of instruments in addition to the site -specific sensors dictated by the variable condi-
tions around the GoM. Standard for all buoys are a meteorological package consist-
ing of an R.M. Young wind sensor and a sonic anemometer (either Gill or Vaisalla)
that measure wind speed and direction, an Aanderaa visibility sensor, a Sutra atmos-
pheric pressure sensor, and a Campbell Scientific air temperature sensor. Wave
parameters are estimated by an onboard Summit Tri-axis accelerometer. In-water
sensors include a Seabird microcat measuring temperature and conductivity mounted
on the base of the buoy at a depth of 1 meter, and an Aanderaa RCM-9 MKII current
meter measuring current velocity at 2 meters. All moorings also additional carry Sea-
bird microcat and/or seacats that measure temperature and conductivity at various
depths. Typical configurations for shallow and deep moorings can be seen in the
schematic diagrams of Figs. 2A and 2B.

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 219

Fig. 2A. Schematic diagram a solar-powered GoMOOS Shelf Buoy for use in approximately
100 m depth in the open Gulf of Maine. Scope of the mooring is provided by a chain pile on the
bottom. Subsurface sensors send data up the mooring wire using inductive modem technology.

220 N.R. Pettigrew et al.

Fig. 2B. Schematic diagram of a GoMOOS Basin Buoy. The buoy scope is provided by an
elastic tether near the bottom that reduces the watch circle of the mooring. Subsurface sensors
send data up the mooring wire using inductive modem technology

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 221

Fig. 2C. Schematic diagram of a GoMOOS Estuarine Buoy. This buoy is the shallow water
version of the Shelf buoy of Fig. 2A. The buoy mast is only 2 m above the water line, and the
500 lb. buoy is capable of being deployed from a small work boat. Subsurface sensors send
data up the mooring wire using inductive modem technology.

222 N.R. Pettigrew et al.

In all GoMOOS buoy/mooring designs, meteorological sensors (wind-speed and
direction, air temperature, atmospheric pressure, visibility, and incident light) and the
shallow subsurface sensors within 4 m of the sea surface are hardwired to a Campbell
Scientific data logger that is housed within the buoy’s instrument well. Seabird In-
struments temperature and conductivity sensors are attached at 0.5m or 1 m below the
surface on the cross members that support the buoy legs. Surface currents are meas-
ured at 2m depth by an Aanderaa RCM9 MKII Doppler current meter (1m on the
nearshore buoy). Optically-equipped buoys have a cluster of optical sensors (which
include chlorophyll and CDOM fluorometers, multi-wavelength absorption and at-
tenuation, meters (ac9), backscattering sensors, and spectral upwelling radiance and
downwelling irradiance radiometers) at 3.5 m. Most buoys have downward-looking
acoustic Doppler Current profilers to measure subsurface currents. The majority of
the Doppler profilers are 300 kHz RD Instruments “Workhorse” Doppler Profilers
with a profiling range of approximately 100m at 4 m vertical resolution. Buoys at
deep locations are equipped with 150 kHz or 75 kHz RD Instruments profilers that
have ranges of approximately 200 and 400 m, respectively. The shallow nearshore
buoys are equipped with Nortek 400 kHz profilers, or RD Instruments 600 kHz pro-
filers that have 80-60 m range and are set with 1 m or 2m vertical resolution.

Data from subsurface sensors deeper than 4 m, including temperature and conduc-
tivity, dissolved oxygen (at select mooring locations) and deep optical packages
(chlorophyll fluorometers and downwelling spectral irradiance sensors), are transmit-
ted up the jacketed steel mooring cable via the Seabird inductive modem system. Use
of this system makes possible the deployment of up to 100 addressable sensor pack-
ages without requiring the running underwater data cables. Instead, the sensors are
inductively coupled to the mooring cable itself. The sensors are sequentially polled
each hour, and the data provided to the data logger and buoy telemetry system.

The inductive modem system is very flexible and an important component of the
array architecture. Electrical cables are a major source of sensor failure in moored
applications as well as a major contributor to hydrodynamic drag in region of strong
currents. Through the use of the inductive modem system, a shallow sensor failure
can be remedied by a diver who unclamps the sensor package and replaces with an-
other, thus avoiding a complex and expensive mooring recovery. In addition, changes
in the depths of sensor deployment only involve attaching the sensor somewhere else
on the wire rather than remanufacture of the electrical cable and connectors. Each of
the sensor packages are internally powered and also provide internal recording. Thus
in case of failure or intermittency of the inductive modem system the data archive will
be intact after mooring recovery, although the data will not be available in real time.

2.3 The GoMOOS Buoy Array

The GoMOOS buoy array is shown in Fig. 3. The red dots with blue letters show the
locations of the twelve GoMOOS buoy locations within the GoM. All but buoy K are
active buoys: Buoy K was relocated (to station N) due to shifting scientific priorities.
Reference to Figure 1 shows that many of the buoys are located within the Gulf of
Maine Coastal Current System (GMCC) [6] Buoys L and N monitor, respectively, the
inflows into the Gulf of Maine from the Scotian Shelf and the North East Channel that

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 223

Fig. 3. The Gulf of Maine Ocean Observing System. Buoys are red dots, CODAR stations are
lavender “bull’s eyes”, green diamonds show the NOAA island meteorological stations, and
amber diamonds show NOAA meteorological buoys.

were discussed earlier. Buoy M, located in the Jordan Basin, monitors the seasonal
inventory of the nutrient-rich SLW in the interior of the GoM, which contributes to
the high productivity of this famous fisheries region.

Buoys L, I, E, and B, all located in the Gulf of Maine Coastal Current (GMCC)
system, collectively represent the first buoys that have gathered long time-series data
at multiple sites within the GMCC. They have now all been in nearly continuous
operation since July of 2001. Buoys A, C, F and J monitor the mouths of four GoM
major estuarine embayments that are prominent in the GoM from the standpoints of
commerce, fisheries, aquaculture, and recreation.

Associated with the eleven active GoMOOS buoy sites, are twenty two buoys and
twenty two complete sets of instrumentation. At approximately six-month intervals
(Spring and Fall) the entire array of buoys and instruments are exchanged for a set
that have been refurbished, tested, repaired and calibrated in the interim since their
previous deployment. This rotation of sensors and buoys has kept the GoMOOS data
streams among the most reliable of the operational ocean sensor arrays.

The data quality assurance program within the Physical Oceanography Group at
the University of Maine, which runs the “in water” GoMOOS sensor array is a pro-
gram of continual quasi-realtime evaluation and validation. Detailed histories are kept
of sensor performance, repair, and recalibration. Signatures of failure modes for the
various sensors have been identified over the years of operation since 2001, and real-
time performance is consistently evaluated and compared with these models of failure
in order to flag suspect data in near realtime. With each passing deployment year, the
QA/QC procedures become more skillful and further automated.

224 N.R. Pettigrew et al.

2.4 The GoMOOS Optics Program

The GoMOOS optics program uses two moored optics packages: the “phytoplankton
biomass and production” packages and the larger “Ocean Color packages.” The
phytoplankton packages consist of WET Labs digital chlorophyll fluorometers
(DFLS) and Satlantic 4-channel downwelling irradiance sensors (OCR504I), used to
estimate phytoplankton biomass and photosynthetically available radiation (PAR),
respectively. The combination of phytoplankton biomass and light measurements are
sufficient for calculating primary production to first order [8]. These instrument pack-
ages are powered and controlled by a WET Labs DH4 data handler that logs ~1 min
of 6 Hz data, and computes statistics of the burst sampling which are relayed to the
Campbell data logger. Upon recovery, the full data set is archived and reprocessed
applying post-recovery calibrations and corrections [9]. The ocean color packages
have all the instruments of the smaller package, but also incorporate a WET Labs
AC9 nine-wavelength absorption and attenuation meter, a WET Labs ECOvsf, back-
scattering sensor, a WET Labs FLCDS CDOM fluorometer, and a Satlantic
OCR507R 7-channel upwelling radiance sensor. Each of the optical moorings carry
phytoplankton packages at 3 and 18m and four-channel Satlantic OCR incident spec-
tral irradiance sensors on top of the buoy. Moorings E and I have the full ocean color
packages at 3 m and three additional channels on the incident irradiance sensors to
complement the radiance sensor.

The most obvious problem with deploying optical sensors for extended periods in
the ocean is biofouling. We have employed a number of strategies for minimizing
biofouling, but it is also important for us to be able to identify, in real time, when
biofouling is a serious problem and to create strategies for correcting the data, either
in real time or after sensor recovery. The sensors are configured with combinations of
copper shutters that lie over optical faces until the instrument turns on, copper tape on
surfaces surrounding the optical heads to prevent macrofaunal growth that might
impede the sensor head (or worse, prevent the shutters from opening), and copper
tubing on the flow through instruments. The copper dissolves in seawater, creating a
toxic layer of water over the sensors while they are in sleep mode; once the sensors
turn on, the shutters rotate away from the sensing head, or in the case of the flow
through instrumentation, the water is flushed away by a pump prior to data collection.
We have found generally these strategies to be effective, even during a 6-month de-
ployment during the most productive portion of the year; particularly for the algal
growth on chlorophyll fluorometers (Fig. 4). We do find some bacterial growth on the
optical windows, particularly on the absorption-attenuation meter. For this reason, it
is particularly important that we are able to identify when this is occurs in real time.
The protocols for real-time and post-recovery calibration have so have been described
elsewhere [10].

Each of the optical moorings (B, E, F, I and M) are equipped with multichannel
downwelling irradiance sensors to measure the spectral solar radiation incident on the
ocean surface and penetrating to 3 and 18m. From these observations we can compute
the photosynthetically available radiation (by integrating over the visible spectrum)
and compute the depth of the euphotic (or lighted) zone in which phytoplankton are
actively photosynthesizing. The combination of phytoplankton biomass, euphotic

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 225

Fig. 4. Underwater photograph of WET Labs fluorometer, after 5 months in the water., Anti-
biofouling copper tape has kept algal growth from affecting the optical window even thought it
was deployed without a shutter. Photo by Steve Karpiak, MER.

depth and depth-resolved PAR provides the inputs to calculating integrated primary
production [11]. In addition to observations of phytoplankton biomass, which are
available on moorings A, B, E, F, I, and M, moorings E and I are also equipped with
more complex optical packages that measure all the inherent and apparent optical
properties that are found in the radiative transfer equation that describes the ocean
color measured by the satellite-based SeaWiFS and MODIS sensors. The inherent
optical properties (spectral absorption, attenuation and backscattering) describe the
innate optical properties of the particulate and dissolved matter in the ocean, while the
apparent optical properties (the ratio of the spectral upwelling radiance to the down-
welling irradiance) describe the light field in the ocean, and ultimately the light that
leaves the ocean and is visible by eye or by satellite sensors. These apparent optical
properties are a function of the incident solar radiation and the inherent optical prop-
erties. Thus, using inverse modeling [11] ocean color observations can be used to
predict the concentration and composition of the material in the ocean.

Finally, the sensor packages on E and I also allow us to provide calibration and
validation of the satellite-based ocean color sensors. Measurements of the spectral
upwelling radiance, which is akin to that measured aboard the satellites, provides the
“sea truth” for the satellite observations once the atmospheric effects are removed.
The moored optics program also provides validation, in that the system measures a
range of ocean color products that NASA provides including chlorophyll concentra-
tion, dissolved, particulate and phytoplankton absorption, and backscattering. This
capability allows the evaluation of the NASA products in a coastal environment,
which has proven to be a major challenge to ocean color science.

2.5 The HF Radar Array

Use of radio waves in the HF and VHF bands for surface current measurement has
been under investigation for several decades. The underlying principle is based on a
phenomenon known as Bragg scattering. When the radio waves are transmitted over

226 N.R. Pettigrew et al.

the wavy air/sea interface, the transmitted radio energy will be scattered directly back
to its source when the radio signal scatters off a wave that is exactly half the transmit-
ted signal wavelength (λ), and that wave is traveling either directly toward or away
from the transmitter. Since scattering from the other waves occurs in all directions,
the received (back scattered) signal comes overwhelmingly the Bragg wave of spe-
cific wavelength wave traveling in a known direction.

The HF radar system used in GoMOOS is the long-range Coastal Ocean Dynamics
Applications Radar (CODAR) system, manufactured by CODAR OS. For a long-
range CODAR (nominal 5 MHz transmission) a λ of ~30 m is the Bragg wavelength.
Since the speed of wave is a function of its wavelength alone for water depths greater
than λ/2 (deep water waves), the returned radio signal contains a Doppler frequency-
shift due to it scattering from the moving sea surface. Once the wave speed is sub-
tracted from this Doppler shift, the remainder is due to the movement of the surface
itself; that is, due to the surface currents. If two or more transmitters and/or receivers
cover the same region, radial speeds can be geometrically transformed into orthogonal
horizontal velocity components, and the vector velocity of the surface currents can be
determined.

The GoMOOS long-range CODAR array is a potentially exciting element of the
observing system capable of widespread, remote surface-current measurements from
a limited number of shore-based radio wave transceivers. These data are of increas-
ing importance to several GoMOOS user groups including those dealing with search
and rescue, contaminant transport, commercial shipping, recreational boating, and
larval transport. The first three of the GoMOOS shore-based CODAR units have been
installed at Wood Island in southern Maine, Greens Island on mid-coast Maine, and at
Cape St. Mary in NS, Canada (see Fig. 3). A fourth site is being installed at a Coast
Guard station on the southern extremity of Grand Manan Island, NB, near the mouth
of the Bay of Fundy, and it is expected to shortly be operational.

The long-range CODAR has a nominal daytime range of 180 km, so that three or
four units are capable of providing coverage over nearly the entire GoM (~400 x 200
km) at a spatial grid size of approximately 6 km. Regions in which signals of adja-
cent CODAR systems overlap (at sufficient angle), correspond to regions in which
full two-dimensional surface currents can be obtained. One drawback of the long-
range 5 MHz system (between the AM and FM radio bands) is that it is susceptible to
ionospheric radio interference and low signal to noise ratios. As a result of this inter-
ference, substantial day-night variation in the range of the system occurs, with the
range often dropping by 50% or more during the night. When this happens, the radials
from the installations do not have much overlap and the area of vector current cover-
age can be very limited. One solution to this problem is to shorten the distance be-
tween CODAR stations. However, the process of seeking approval from local
authorities and landowners has proved to be an arduous one. In addition, the funding
of the GoMOOS systems has never been adequate to fund expansion of the initial
four-unit CODAR infrastructure.

Because of the highly variable CODAR radial overlap and vector coverage in the
GoM, and the very strong tidal variability it has been challenging produce useful
surface current fields. The inability to consistently receive data throughout the tidal

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 227

cycle often reduces the data to a gappy series of realizations that can not be properly
averaged to give a consistent picture of the general circulation patterns. Because of
these limitations, we have begun to apply Artificial Neural Networks in order to fill in
missing data values to provide tidally-averaged surface current maps, and to work
toward the goal of short-term, wide area predictions of the GoM surface current
fields.

2.6 Applications of Neural Network Models to Sensor Array Data

Artificial Neural Networks (ANNs) are parallel arrangements of simple processing
units that are loosely analogous in structure and function to a biological central neu-
ron. ANNs are comprised of a large number of these neurons in multiple layers. These
neurons connect input and output through a collection of weights and transfer func-
tions designed to minimize the differences between predictions and realizations
(data). By adjusting the weights, the ANN can be “trained” to make very accurate
predictions. ANNs that adjust their weights automatically can “learn” to make predic-
tions.

Back propagation neural networks, in particular, are powerful forecast tools. They
are called back propagation networks because of the learning algorithm they use, in
which error corrections propagate backward from the output layer to the input one,
i.e. in the direction opposite to that of signal spreading during the normal network
operation, during the weight adjustment process. The weights converge to their
“trained” configuration by minimizing the network output’s mean squared error.

With suitable inputs, Artificial Neural Networks are and effective method for fill-
ing in missing values and predicting future values of geophysical time series. The
great advantages of ANN models are that they are statistical and relational rather than
dynamical in nature, and they do not generally depend upon the existence of a simple
linear relationship between input (forcing) and output (response). Thus physical-
mathematical equations governing the process are not required for the forecast to be
made. All that is required is a set of input data that are correlated with the desired
output, and sufficient examples of the “correct answer” (observations of response) to
train the model.

In order to develop an ANN capable of predicting the complex currents in the Gulf
of Maine, we began first by working on models to nowcast and forecast surface cur-
rents measured by in situ current meters suspended 2 m beneath the GoMOOS buoys.
These data are of high quality with a high signal-to-noise ratio; an attribute that is
crucial for effective training of the ANN model.

A neural network model was developed for the prediction of missing and future sur-
face current values [12]. The inputs to the nowcast model were measured local wind
vectors from 2 and 3 hours prior (there is a lag between wind forcing and current re-
sponse), tidal current predictions based on harmonic analysis of previous current meter
data, measured surface currents 1, 2, and 4 hrs earlier; 16m current measurements 1
and 0 hrs earlier; and a mean of the previous tidal cycle (~12.5) hours. The ANN
is extremely successful at predicting the currents. In fact, it is more accurate

228 N.R. Pettigrew et al.

than the predictions of GoM dynamical numerical circulation that use the full nonlin-
ear equations of motion [1].

Figure 5 shows over plot comparisons of the ANN nowcast and the observed vec-
tor current components. The vector correlation coefficient between nowcast and
observed currents was ~0.95 for most of the moorings, which was generally 25%
higher than for the tidal prediction alone. Forecast skill of the model was essentially
the same as the nowcast skill out to 3 hours into the future. Predictions beyond 3
hours had significantly lower correlation coefficients. For example, vector correlation
between currents predicted 12 hours into the future and the observed currents were
0.7-0.8. An example is shown in Figure 6.

Fig. 5. Comparison plot of observed surface currents(black) and the nowcast predictions of a
neural network model (grey). Model inputs were measured surface and deep currents 1, 2, and 4
hrs earlier; wind 2 and 3 hours earlier; a Tidal prediction and a mean of the previous12.5 hours.

Fig. 6. Comparison plot showing, for a two-week period, observed surface currents and the
ANN prediction 12 hours into the future. The thin dark line represents the observed currents
and the thick blue line represents the predicted values. The correlation coefficient based on
4000 hours of comparison is 0.78.

V Component Comparison

-1.5

-1

-0.5

0

0.5

1

1.5

1-Aug-04 3-Aug-04 5-Aug-04 7-Aug-04 9-Aug-04 11-Aug-04 13-Aug-04

m
/s

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 229

Predictions of CODAR data fields are more problematic than predicting direct sur-
face-current measurements from the GoMOOS buoy array. The CODAR data have a
lower signal-to-noise ratio, and the available inputs for the model fluctuate in time
and space. Because the data availability was spotty, we were unable to provide tidal
predictions, average currents for the previous tidal cycle, or even previous values at
each location as inputs. In fact, we were limited to wind forcing and a varying collec-
tion of current vector values from “nearest neighbors” in the CODAR field, and the
radial values in regions where vectors where not available due to the absence of over-
lapping signals from adjacent CODAR units. In order to cope with the variable inputs,
we developed a weighting system that produces a spatially-weighted value for the
nearest neighbors so that unique ANNs need not be developed for each of the myriad
possible input configurations.

The skill of the ANN-CODAR nowcasts has been very encouraging. Under favor-
able conditions, when some neighboring values are available, the vector correlation
values between nowcast and observed values are approximately 0.9. Visual inspec-
tion of the plots of predicted and observed values shows that the discrepancies be-
tween observed and predicted values are often concentrated in episodes in which the
CODAR data shows large values. Since the CODAR data are known to be noisy, the
possibility exists that the ANN prediction is closer to the true value in some instances,
and may prove useful as an automated quality control procedure. When large dis-
crepancies exist between nowcast and observation, further assessment of the quality
CODAR fields may be required.

An application of the ANN nowcast to the spatial CODAR surface current map is
shown in Figure 7. Panel A shows the vectors from the CODAR vector data. Spatial
gaps in the data are caused by reduced range so that radials do not overlap. The map
in Panel B shows considerable improvement in coverage using winds, nearest
neighbors, and radials as inputs to the ANN model. Although this example shows
tremendous improvement, it represents relatively favorable conditions that are not
always met, and further improvements in the model are required for a truly opera-
tional product.

The next logical step in the process of producing complete hourly surface current
maps, is to add the output from a dynamical numerical circulation model as an input
to the ANN model. The numerical model output has the great advantage of being
regular in both space and time. When combined with wind forcing, CODAR radials,
and weighted nearest neighbor (possibly including the directly measured moored
current records), the ANN will improve upon the already reasonable surface current
prediction of the dynamical model. Comparison of surface current meter records and
numerical model output indicates that most dynamical models over respond to wind
forcing. A hybrid dynamical-neural model is expected to improve the wind-driven
predictions significantly.

230 N.R. Pettigrew et al.

Fig. 7. A, B. Upper plot (A) shows surface current vectors observed by CODAR. Lower plot
(B) shows the ANN nowcast of the missing vectors that satisfy the model requirements. The
inputs to the model are: Radial Doppler data, weighted-average of neighboring values, and
winds.

3 GoMOOS Operations

The data return for the GoMOOS ocean sensor array has averaged approximately
90% over the first five years of operation. This unusually high rate of data return is

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 231

due in large part to our operational six-month duty cycle on all equipment. We have
22 buoys for 11 locations, and 22 complete sets of instrumentation. The identical sets
of sensors are rotated in and out of service on a six-month deployment/maintenance
schedule.

Despite the high success rate achieved, some persistent and recurrent technical
problems have occurred. Some of these problems arise from the harshness of the
GoM environment, and others from the familiar problems that have plagued oceano-
graphic field programs for decades.

While the buoy itself is solar powered, the majority of the sensors are powered by
internal batteries. As the instruments age, and are battered by storms and at-sea opera-
tions, they seem more prone to transient high electrical current drains. Our surface
current meters have been particularly prone to these problems. In response to the
battery packs of our current meters dying prematurely, we have added auxiliary bat-
tery packs inside the buoy instrument well. This strategy has not entirely eliminated
the problem although we now power the surface current meters with power packs that
have four times the expected power requirements. In addition to high current drains,
performance of many sensors occasionally suffers from substandard batches of batter-
ies from various manufacturers.

 Another common mode of failure has been fatigue of electrical cables that connect
surface and near-surface sensors to the buoy system. This problem will probably
never entirely disappear, but it has been significantly improved with very careful
cable strain relief, by using Kevlar-reinforced electrical cabling, and by routinely
replacing all cables annually.

The extremely harsh environmental conditions in the GoM in winter has caused
wave damage to solar panels that power the buoy system, bearing failures on ane-
mometers, freezing of the anemometer rotors, and icing of the buoy superstructure
including the solar panels (which causes low power generation). Solar panel breakage
has been eliminated by reinforcing the backs of the panels with aluminum plates and
foam cushioning, and all buoys have been fitted with sonic anemometers that are less
prone to damage from freezing spray. The icing problems in winter remain a serious
concern. The buoys were designed to perform with several hundred kg of sea ice
build up, but under very cold storm conditions the ice build up exceeds design limits.
We are presently considering a retrofit of the winter buoys in which the solar panels
will be raised to reduce ice build up, and the addition of more ballast below the water
line to increase buoy stability under heavy icing conditions.

Early in the operation of GoMOOS, we experienced significant damage and ser-
vice interruptions due to fishing activity and barge traffic that have occasionally dam-
aged sensors and moved buoys off station. The gear conflict problems with the fishing
and marine transport industries have decreased with time as the fleets have become
accustomed to the presence of the buoys.

As described earlier, biofouling of the optical sensors has at times been a serious
problem in GoMOOS [10]. The problem has been reduced significantly through the
use of copper tape, tubes, and shutters, although the mechanical reliability of the cop-
per shutters is a continuing area of research and development. Biofouling is not a
serious problem for most of the other GoMOOS sensors. The acoustic Doppler cur-
rent meters are essentially immune to even extreme biofouling because the sound
waves travel easily through the attached fouling organisms, and because the acoustic

232 N.R. Pettigrew et al.

current meters are remote sensors that make measurements a distance of meters-to-
hundreds-of-meters from the sensor surface. The temperature and conductivity sen-
sors, while potentially vulnerable, are protected by poison tubes supplied by the
manufacturer.

3.1 Preliminary Scientific Results from the Sensor Array

An example of the impact of the GoMOOS system on our ability to study the variabil-
ity in the GoM is shown in Fig. 8. Prior to the implementation of the GoMOOS sys-
tem, there were very few long-term data records in the GoM. In fact, there were no
time series from the Gulf of Maine Coastal Current (GMCC) system that exceeded
one year in length. The data shown in Figure 8 are hourly salinity values for five
years from August 2001 through August 2006 at 50 m depth at several locations in the
GMCC system. The usual seasonal salinity progression at these locations at 50 m
depth is a salinity minimum in May or June, following the annual snow melt and
spring rains, and a subsequent rise of 1.0-1.5 PSU, peaking in late fall or early winter.
However, after the June 2004 minimum, the salinity rebounded by less than half the
usual seasonal rise and then fell again in response to an unusually high runoff the
following spring. This pattern was observed at every GoMOOS measurement site
from the surface down to 250 m depth (in the central GoM). As is evident in Figure
8, low salinity values in the GoM did not rebound until that late summer of 2006,
resulting in significant low-salinity anomaly pattern that lasted for two years.

The fundamental cause of this widespread salinity anomaly is clearly not the high run-
off, although the runoff was a contributing factor some six months into the anomaly
event. From our discussions of section 1.1, one might expect that at the beginning of the
low salinity anomaly in the fall, there was less inflow of salty slope water and a compen-
sating increase in the inflow of fresher Scotian Shelf water (in order to conserve volume
in the GoM). As shown in Figure 9, direct measurements of the salinity and transports in
the deep waters of the Northeast Channel confirm that not only did the characteristic
inflow of salty slope waters decrease, it actually reversed for the fall and winter of 2004
and again (although more weakly) in 2005 (Figure 9). This unprecedented outflow event
resulted in a net outflux of salinity in the deep waters and (presumably) greater inflow of
fresher waters near the surface from the Scotian shelf. The resulting massive freshening
of the GoM in 2004 and 2005 represents a major perturbation to the normal ecological
conditions that is presently under further investigation.

3.2 Future Ocean Observing in the GoM: A Five-Year Horizon

Ocean sensor and ocean platform technologies are in a period of rapid development.
The operational systems (such as GoMOOS) now in the water were not feasible one
decade ago. Assuming reasonable funding levels, we can expect continued rapid
advancement in the capabilities of operational ocean sensor networks within the next
five years. These advances will include significant growth in the areas of real-time
biochemical sensors, moored profilers, sensor miniaturization, lower power consump-
tion, autonomous mobile sensor platforms, high speed data telemetry technologies,
increases in onboard data processing capabilities, advances in data visualization tech-
niques, and artificial intelligence.

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 233

Fig. 8. Observed records of salinity observations (black), least-squares fit of annual and semi-
annual periodicites to “normal” years (grey), and average strength of anomalies (lt. grey
>0,dark grey >0) at 50m depth at three coastal shelf buoys (see Fig. 3 for locations) showing
the gulf-wide low salinity anomaly of 2004-2005.

In situ moored nutrient sensors are presently capable of moored operation. These
sensors fall into two categories: those using wet chemistry and those that don’t. In
general the reagent-based sensors have four issues that limit the practical deployment
duration: reagent capacity, reagent stability, power, and biofouling. It is presently a
challenge to achieve more than a few months deployment. Biofouling often the most
severe limitation is shallow regions, but in deeper waters below the euphotic zone, the
other factors still limit deployments.

There are other sensors that can measure nitrate (but not the other inorganic nutri-
ents) in a moored real-time configuration using by UV absorbance spectrophotometry.
For this type of sensor, the limiting factors are: biofouling, power, and precision; it is
limited to approximately +/- 2 micromolar NO3. This relatively low precision may not
be to significant in high nitrate environments but its detection limit is above nitrate
levels typical in low-nutrient, oligotrophic waters. It is likely that significant progress
will continue to be made with both of these technologies and that within a few years,
6 month deployments will become standard.

A lot of progress has been made with real-time moored sensors that are capable of
detecting biological organisms including algal species and bacteria through RNA
techniques. At present the samplers are large and expensive, and rely on enzymes
that carry limitations similar to the reagent of the nutrient sensors; they are bulky and
are potent for a limited time. A new approach in currently under development that is

234 N.R. Pettigrew et al.

Fig. 9. Observed flow through the Northeast Channel. Dark grey shading shows the anomalous
deep outflow flow conditions that prevailed from August-April 2004 and September-May 2006.
Previous measurements have shown consistent inflow (light grey) in this region with maximum
inflows generally occuring in the August to September time period of each year. Flow values
presented are montly average values and are expressed in units of cm/sec.

not dependent upon enzymatic action, and once this technique is fully developed
longer deployments and orders of magnitude more samples should be possible. These
technologies are on the five year horizon and should revolutionize the monitoring of
marine microorganisms.

Moored profilers offer tremendous advantages over fixed-point sensor deploy-
ments. The most obvious advantage is several orders of magnitude increase in the
vertical resolution of the measurements. The ability to profile vertically reduces dras-
tically the number of sensors necessary to effectively monitor the bulk properties of
the water column, and it also makes possible the detection of thin layers of high gra-
dient that may be crucial to proper understanding of physical and biogeochemical
dynamics.

While several successful profilers are commercially available at this time, they are
of the “wire crawler” or bottom winch varieties. These technologies are very success-
ful but they are not ideally suited to the buoy configurations presently used in Go-
MOOS and most other observing systems. The wire crawlers require a subsurface
taut-wire mooring to successfully climb in the presence of high wave action. Near
surface measurements are problematic with such a system as is telemetry. The bot-
tom winch style of profiler need to be protected in heavily fished waters by a group of
relatively cumbersome guard buoys.

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 235

In order to work with a surface following buoy system like the GoMOOS array, a
profiler would need to be decoupled from the large amplitude motions of the buoy
and attached wire (10-15 m in winter storm conditions) while still being able to te-
lemeter its data in real time. One possible solution would be a buoyancy-driven pro-
filer. Such a system would rise and descend at a relatively constant rate despite the
extreme heaving of the wire under winter storm wave conditions. The data would be
transferred to the buoy system by inductively coupling the profiler’s sensors to the
mooring cable as is presently done with the fixed sensors on the GoMOOS buoys. A
“bumper” would stop the profiler one meter below the buoy to avoid damage, and the
profiler would then sink back to the near-bottom until the next hour.

Autonomous and semi-autonomous mobile sensor platforms are on the verge of
revolutionizing oceanographic surveys. In limited ways these platforms can stand in
either ships or moored buoys, and they are generally very cost effective. For the pur-
poses of this discussion we separate these platforms into Autonmous Underwater
Vehicles (AUVs) and Autonomous Surface Vehicles (ASVs). The former have ad-
vanced much farther in development, although the potential of the ASVs may ulti-
mately be greater.

AUVs are conveniently divided into propeller-driven vehicles that act much like
miniature submarines, and gliders that use buoyancy adjustments and wings for loco-
motion. Both classes of vehicles need to surface in order to transfer their data, receive
any changes or adjustments in mission planning, and in most cases, to obtain surface
position data for subsurface dead reckoning.

AUVs with active propulsion systems have the advantage of much greater speed,
greater maneuverability, and can thus carry out complex quasi-synoptic missions of
limited duration. The principal limitation at the present time is mission length. The
sensors systems, propulsion systems, and data telemetry/navigation systems are all
battery powered. Under the constraints of existing battery technology the submersi-
bles are limited to a few days of operation.

Gliders are much more energy efficient than AUVs that have active propulsion sys-
tems, and the long-range seaglider can achieve mission lengths of approximately six
months with a range that can take it across an ocean basin while “seesawing” between
the surface and 1000m depth. The glider adjusts its buoyancy and shifts its batteries
for and aft to achieve nose down sinking and nose up rising. Once the buoyancy and
trim are adjusted, no further energy is needed for propulsion until the glider reaches
the limit of its descent or ascent and readjusts for the opposite cycle. Since most of
the energy usage occurs during the buoyancy adjustments and the data transfer, the
mission length is a function of the dive depth. Since shallow water requires more
frequent transitions the mission lengths are generally limited to a few weeks.

Gliders and active propulsion AUVs are usually on the order of 2 m in length and
20-30 cm in diameter. Thus they have limited payload capacity that must be shared
by sensors and battery packs. As sensor miniaturization evolves we may anticipate
that more sensors can be accommodated in these AUVs. In addition, as battery tech-
nology improves, mission range and duration should become less serious constraints.
In addition to the obvious role in substituting for extremely expensive manned sur-
veys, AUVs (particularly gliders) may be able to serve as short-term virtual moorings.
By gliding back and forth, the glider is able to profile at essentially one location

236 N.R. Pettigrew et al.

(assuming the horizontal scales of interest are sufficiently large) to obtain a time seri-
ous of profiles.

Within the next five years we expect to see a glider that is capable of landing on
the bottom and making a set of measurements (including acoustic Doppler current
profiles) while stationary, then making a profile of water properties (including tem-
perature, salinity, dissolved oxygen, and chlorophyll fluorescence) while rising verti-
cally to the surface and then gliding to the next “moored” location. This glider/lander
would act much like an array of fixed moorings.

Although ocean surface drifters have been in scientific use for at least as far back
as the Challenger Expedition in the 1870’s, their usefulness was limited by the inabil-
ity to track them over long distances with more resolution than the release and recov-
ery points. This technical problem was alleviated a hundred years later in the 1970’s
when the ARGOS satellite system was developed that allowed positions of a large
number of drifters fixed multiple times per day over a broad area. This development
ushered in the modern era of satellite-tracked drifters. Since the advent of Global
Positioning System (GPS), it has been possible to track drifters continuously and to
telemeter these data via global and local communications including those built into
the NOAA’s Geostationary Operational Environmental Satellites (GOES) weather
satellite system.

Coastal Ocean Observing Systems (COOS) may benefit from the development of a
system tailored to the scales of coastal environments. The density of drifters mapping
the small and meso surface circulation and frontal structures needs to be very high.
Conversely, the range of the built-in telemetry systems need not be global, and the
deployments may be of shorter duration. We foresee the development and application
of inexpensive wireless drifters that form a self-organizing network of relayed, multi-
path communications between neighbors. Individual drifters would broadcast their
positions and ancillary data streams (such as temperature, wave heights, etc.) as well
as the data of all neighbors within range. In this way, a few inexpensive drifters
within range of the array of nodes would transfer the data of the entire fleet to the
observing system. The relatively inexpensive GPS drifters could be deployed in large
numbers in order to resolve meso-scale features, directly measure vorticity, and esti-
mate dispersion. A larger-scale buoy array with long range communication capabili-
ties (such as GoMOOS) could serve as a grid of communication nodes. In cases
where the associated buoy array is widely spaced, a floating node could be deployed
with the drifters in order to maximize the number of drifters that remain within net-
work. Air-deployable nodes dropped into the centroid of the drifter distribution could
be deployed as the drifters begin to disperse widely. Another possibility is that
autonomous or remote-controlled aerial drones may act as data mules to recover the
data from drifters that have strayed from the network.

4 Summary

The GoMOOS system is a prototype for coastal observing systems in the United
States. It has been remarkably successful in its first years of operation, and has
proven the feasibility of the concept. The real-time data are now routinely used by
mariners, fisherman, recreational boaters, aquaculturists, marine pilots, the US Coast

 An Operational Real-Time Ocean Sensor Network in the Gulf of Maine 237

Guard, the national weather service, natural resource managers, oceanographers, and
the general public. In this regard, it is fair to say that the system has exceeded expec-
tations.

In addition, the wealth of time series data has already begun to yield scientific re-
sults that would not have been possible without the long-term records that are un-
precedented in this region. We anticipate that the scientific contributions will increase
greatly as the data records become longer. Continued progress in sensor development
can be expected to expand greatly the biological and chemical time-series measure-
ments that will become feasible in near future.

Acknowledgments

We thank the entire staff of the Physical Oceanography Group of the University of
Maine and the Optics Group at Bigelow Laboratory, whose dedication and determina-
tion made this work a success. We gratefully acknowledge funding from ONR,
NOAA, the State of Maine, the University of New Hampshire, and the University of
Maine, and we also acknowledge the efforts of the GoMOOS staff and the GoMOOS
Board of Directors who have worked to make these data accessible to the public via
www.gomoos.org.

References

1. Xue, H., Shei, L., Cousins, S., Pettigrew, N.R.: The GoMOOS nowcast/forecast system.
Cont. Shelf Res. 25, 2122–2146 (2005)

2. Pettigrew, N.R., Townsend, D.W., Wallinga, J.P., Brickley, P.J., Hetland, R.D., Xue, H.:
Observations of the Eastern Maine Coastal Current and its Offshore Extensions in 1994.
Journal of Geophysical Research 103(C13), 30,623–30,639 (1998)

3. Sinclair, M., Wilson, S., Subba Rao, D.V.: Overview of the biological oceanography of the
Gulf of Maine. In: Proceedings of the Gulf of Maine Scientific Workshop, Woods Hole
Massachusetts, pp. 91–111 (1991)

4. Bigelow, H.B.: Physical Oceanography of the Gulf of Maine. Fish. Bull. 511-1027 (1927)
5. Brooks, D.A.: Vernal circulation in the Gulf of Maine. Jour. of Geophys. Res. 90, 4687–

4705 (1985)
6. Pettigrew, N.R., Churchill, J.H., Janzen, C.D., Mangum, L.J., Signell, R.P., Thomas, A.C.,

Townsend, D.W., Wallinga, J.P., Xue, H.: The kinematic and hydrographic structure of the
Gulf of Maine Coastal Current. Deep Sea Res. II 52, 2369–2391 (2005)

7. Wallinga, J.P., Pettigrew, N.R., Irish, J.D.: The GoMOOS moored Buoy Design. In: Pro-
ceedings of the IEEE Oceans 2003 conference, pp. 2596–2599 (2003)

8. Siegel, D.A., et al.: Bio-optical modeling of primary production on regional scales: The
Bermuda BioOptics project. Deep-Sea Res. II 48, 1865–1896 (2001)

9. Roesler, C.S., Boss, E.: In situ measurements of the inherent optical properties (IOPS) and
potential for harmful algal bloom (HAB) detection and coastal ecosystem observations. ch.
5. In: Babin, M., Cullen, J.J., Roesler, C.S. (eds.) Real-time Coastal Observing Systems for
Ecosystem Dynamics and Harmful Algal Blooms. UNESCO Series Monographs on
Oceanographic Methodology (2005)

238 N.R. Pettigrew et al.

10. Pettigrew, N.R., Roesler, C.S.: Implementing the Gulf of Maine Ocean Observing System
(GoMOOS). In: IEEE proceedings of Oceans 2005 (Europe), Brest France, pp. 1234–1241
(2005)

11. Roesler, C.S., Boss, E.: Spectral bean attenuation coefficient retrieved from ocean color
inversion. Geophys. Res. Lett. 30, 1468–1472 (2003)

12. Pettigrew, N.R., Wallinga, J.P., Neville, F.P., Schlenker, K.R.: Gulf of Maine Ocean
Observing System: Current Measurement Approaches in a Prototype Integrated Ocean Ob-
serving System. In: IEEE Proceedings, Eighth Current Measurement Technology Confer-
ence 2005, pp. 127–131 (2005)

Using the Sensor Web to Detect and Monitor

the Spread of Vegetation Fires in Southern
Africa

Andrew Terhorst1, Deshendran Moodley2, Ingo Simonis3, Philip Frost1,
Graeme McFerren1, Stacey Roos1, and Frans van den Bergh1

1 Meraka Institute, CSIR, PO Box 395, Pretoria, 0001, South Africa
{aterhorst,pfrost,gmcferren,sroos,fvdbergh}@meraka.org.za

http://ict4eo.meraka.org.za
2 School of Computer Science, University of Kwazulu Natal, Durban,

4041, South Africa
moodleyd37@ukzn.ac.za

http://www.sciag.ukzn.ac.za/comp/
3 Margarete-Bieber Weg 11, 35396, Giessen, Germany

ingo.simonis@geospatialresearch.de
http://www.geospatialresearch.de

Abstract. Key concepts in disaster response are level of preparedness,
response times, sustaining the response and coordinating the response.
Effective disaster response requires a well-developed command and con-
trol framework that promotes the flow of information. The Sensor Web
is an emerging technology concept that can enhance the tempo of dis-
aster response. We describe how a satellite-based system for regional
vegetation fire detection is being evolved into a fully-fledged Sensor Web
application.

1 Introduction

Most disasters are of short duration and require a fixed amount of consequence
management. Examples include earthquakes, tsunamis and storm events. Other
disasters are more complex and unfold in a non-linear fashion over an extended
period. Such disasters require ongoing and adaptive consequence management.
Examples include the outbreak contagious diseases (e.g. bird flu) and wild fires.

Key concepts in disaster response are level of preparedness, response times,
sustaining the response and coordinating the response [1]. Time is critical and
the three primary challenges in the race against time are uncertainty, complexity
and variability [2]. Dealing with these challenges requires a well-designed com-
mand and control framework that promotes the free flow of information. Many
consider the foundation for command and control to be the Observe-Orient-
Decide-Act (OODA) loop [3]. The time it takes to complete an OODA cycle is
what determines the tempo of the disaster response (Figure 1).

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 239–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

240 A. Terhorst et al.

Fig. 1. The OODA loop

Advances in sensor technology and distributed computing, coupled with the
development of open standards that facilitate sensor/sensor network interoper-
ability, are contributing to the emergence of a phenomenon known as the ’Sensor
Web’[4]. This phenomenon can be described as an advanced Spatial Data Infras-
tructure (SDI) in which different sensors and sensor networks are combined to
create a sensor-rich feedback control paradigm [5]. In this paper, we describe
how the Sensor Web can enhance the tempo of disaster response in context of
vegetation fires.

2 Sensor Web Enablement

Sensor Web Enablement (SWE) is an Open Geospatial Consortium (OGC) ini-
tiative that extends the OGC open web services framework [6] by providing ad-
ditional services for integrating web-connected sensors and sensor systems. SWE
services are designed to enable discovery of sensor assets and capabilities, access
to these resources through data retrieval and subscription to alerts, and tasking
of sensors to control observations [7]. SWE is not restricted to sensors/sensor
systems but also refers to associated observation archives, simulation models and
processing algorithms. SWE enables interoperability between disparate sensors,
simulation models and decision support systems. It acts as a middleware layer
that connects physical assets, geo-processing applications and decision support
tools. SWE provides services that automatically trigger actuators when certain
conditions are true. The following figure illustrates the SDI and the advanced
SWE model.

Sensor Web 241

Fig. 2. OGC Compliant AFIS Architecture

2.1 SWE Information Model

The SWE initiative has developed draft specifications for modelling sensors
and sensor systems (SensorML, TransducerML), observations from such systems
(Observations and Measurements) and processing chains to process observations
(SensorML) [8,9]. The draft specifications provide semantics for constructing
machine-readable descriptions of data, encodings and values, and are designed
to improve prospects for plug and play sensors, data fusion, common data pro-
cessing engines, automated discovery of sensors, and utilisation of sensor data.

2.2 SWE Services Model

SWE provides four types of web services: Sensor Observation Service (SOS), Sen-
sor Alert Service (SAS), Sensor Planning Service (SPS) and Web Notification
Service (WNS) [10,11,12,13]. The SOS provides a standard interface that allows
users to retrieve raw or processed observations from different sensors, sensor sys-
tems and observation archives. The SAS provides a mechanism for posting raw or
processed observations from sensors, process chains or other data providers (in-
cluding a SOS) based on user-specified alert/filter conditions. When subscribing
to a SAS, users not only define the alert conditions but also the communication
protocol for disseminating alerts via the WNS.

The WNS provides a standard interface to allow asynchronous communication
between users and services and between different services. A WNS is typically
used to receive messages from a SAS and to send/receive messages to and from a
SPS. The SPS provides a standard interface to sensors and sensor systems and is
used to coordinate the collection, processing, archiving and distribution of sensor

242 A. Terhorst et al.

observations. Discovery of OGC and SWE services is facilitated by the Sensor
Web Registry Service – an extended version of the OGC Catalogue Service [14].

3 The Advanced Fire Information System

The Advanced Fire Information System (AFIS) is the first near real-time
satellite-based fire monitoring system in Africa. It was originally developed for
the South African electrical power utility, ESKOM, to mitigate the impact of wild
(vegetation) fires on regional electricity supply [15,16]. Vegetation fires burning
under high-voltage transmission lines can lead to line faults (flash-overs) disrupt-
ing regional electricity supply.The destruction caused by seasonal vegetation fires
emphasised the need to develop a satellite-based information system that could
provide information on the frequency and distribution of vegetation fires to the
research and fire fighting community.

ESKOM and the CSIR commenced research to investigate the efficacy of satel-
lite thermal infrared sensors to detect vegetation fires that could cause flash-overs
anywhere along the 28000 km of transmission lines that criss-cross South Africa.
AFIS, implemented in June 2004, searches for hotspots within a 5km buffer
zone along all transmission lines at 15 minute time intervals. When a hotspot
is detected, AFIS generates email and SMS text messages that are transmit-
ted to relevant authorities in near real-time. AFIS was first implemented using
propriety GIS technology developed by the University of Maryland (Web Fire
Mapper,[17]) but has now been re-engineered as an OGC compliant Sensor Web
application based on open source software.

3.1 Hotspot Detection

AFIS currently relies on a contextual algorithm for hotspot detection using the
MODIS sensor aboard the polar orbiting TERRA and AQUA satellites and
the SEVIRI sensor aboard the geostationary METEOSAT-8 satellite [18]. The
hotspot update rate for MODIS is every six hours compared to every 15 minutes
for SEVIRI. Though the SEVIRI provides almost near real-time hotspot detec-
tion, it can only resolve hotspots five hectares or more in extent unlike MODIS,
which can resolve hotspots less than a hectare in size.

The hotspot detection algorithm was originally developed for the Advanced
Very High Resolution Radiometer (AVHRR) sensor flown aboard the TIROS
satellites [18,19,20]. The algorithm uses 3.9μm and 10.8μm bands to discrim-
inate fire pixels from background pixels. The algorithm first classifies a pixel
according to a fixed threshold, e.g. T > 300K, to identify potential fire pixels
– the remaining pixels are called background pixels. The neighbourhood of this
pixel is then searched for background pixels, growing the neighbourhood if nec-
essary to ensure that at least 25% of the neighbourhood pixels are background
pixels. From this set of background pixels, the mean and standard deviation
statistics are calculated from the 3.9μm and the 3.9μm − 10.8μm band differ-
ence data. The pixel under consideration is then classified as a hotspot if its

Sensor Web 243

3.9μm value exceeds the background mean by some multiple of the standard
deviation – a similar test is performed on the 3.9μm − 10.8μm band difference.

3.2 Current Sensor Web Architecture

Figure 3 depicts the current OGC compliant architecture for AFIS. The contex-
tual algorithm for hotspot detection has been implemented in two separate image
processing chains - one dedicated to MODIS imagery, the other dedicated to SE-
VIRI imagery. The image processing chains record hotspot events in a database
that is exposed to the Fire Alert Service (FAS) via a SOS. The FAS essentially
is a SAS with some additional application logic for spatial processing. Spatial
processing is currently limited to intersecting hotspot events with features of
interest. However, the aim is to enrich fire alerts by populating hotspot events
with additional attribute data such as surface wind vectors and fire danger index
provided by other OGC web services such as a Web Coverage Service (WCS)
and/or Web Feature Service (WFS) and/or another SOS.

The FAS has been implemented within the OXFramework, a Graphical User
Interface (GUI) developed by 52oNorth Open Source Spatial Data Infrastructure
Initiative (www.52North.org). When subscribing to the FAS, users must specify
the preferred medium for receiving fire alerts (e.g. Simple Message Service (SMS)
or Email) and what parameters to pass through to the spatial process chain.
Parameters may include what features of interest to intersect with hotspots (in
the case of ESKOM, this would be buffer zones around high-voltage transmission
lines).

4 Results and Discussion

4.1 Hotspot Detection Success Rate

The success of AFIS as a management tool within ESKOM is measured by its
ability to provide early detection of hotspots (fires) close to transmission lines
before flash-overs occur. MODIS was able to detect an average of 44% of all
flash-over fires between 2003 and 2005 whereas SEVIRI detected 46% of all
flash-over fires during the same period. By combining the detection accuracy
of MODIS and MSG within one system (AFIS), the detection accuracy rose to
60%. The statistics of the MODIS and SEVIRI detections clearly demonstrate
the limitations of these current sensors as a detection tool on their own. The
MODIS sensor was able to detect many of the smaller fires, but due to its
infrequent revisit time was unable to detect more than 40% of the fires. The
SEVIRI sensor on the other hand struggled to detect smaller fires due to its
coarse resolution. The 2% higher detection accuracy calculated for SEVIRI with
its lower resolution and less advanced detection algorithm shows the importance
of frequent observations. The combination of accurate detection from MODIS
with the frequent detection from SEVIRI increased the fire detection rate by
more than 15%[16].

244 A. Terhorst et al.

<<service>>

AFIS Fire Alert Service

<<component>>

MODIS Data
Algorithm Hotspots

<<component>>

SEVERI Temporal
Algorithm Hotspots

<<component>>

SEVERI Contextual
Algorith Hotspots

SAS

<<component>>

AFIS
SensorObservation Service

SOS

<<service>>

Web Notification Service
WNS

ISensorObservationService

<<service>>

Web Coverage Service

WCS

IWebNotificationService

<<component>>

AFISII GUI

ISensorAlertingService

<<service>>

Web Feature Service

WFS

IWebCoverageService IWebFeatureService

<<service>>

Web Map Service
WMS

IWebMapService

Consumer

Contains spatial processing
engine for spatial filtering of
hotspot alerts and determing
urgency of alerts

Communicates

Subscribes

Persists

Subscribes

<<use>> <<use>>

Fig. 3. OGC Compliant AFIS Architecture

To improve the detection rate, a new non-contextual hotspot algorithm for the
SEVIRI sensor that is more sensitive is being developed. The basic approach is to
build a general model of the diurnal cycle for the thermal infrared band, and then
to fit this model to the observed data of the last 24 hours. This model can then be
used to generate accurate estimates of the expected background temperatures.
If a statistically significant difference between the current observed temperature
and the predicted background temperature is observed, then the pixel in question
is classified as a hotspot. The first implementation of this algorithm relied on
a Kalman filter to provide the estimates of the background temperature. Initial
results indicate that this method is significantly more sensitive, particularly in
cases where the background temperature is below 300K (e.g. as in the early
morning hours)[21].

4.2 Extending AFIS Functionality

The intention is to shift the emphasis from simple hotspot detection to more
sophisticated fire risk management. This requires a good understanding of what
controls vegetation fire behaviour. We are currently building a domain ontology

Sensor Web 245

[22,23] for vegetation fires. The ontology will capture key concepts in the veg-
etation fire domain such as combustion properties, fuel load, burning regime,
fire weather, fire suppression methods, and topographical controls. The aim is
to use the Sensor Web to observe specific fire-related phenomena described in
the vegetation fire ontology and employ machine reasoning to determine fire risk
i.e. automate the observe and orient parts of the OODA loop and issue more
meaningful fire alerts.

4.3 Sensor Web Agent Platform

To achieve the desired level of automation requires a more intelligent archi-
tecture than what the current SWE framework provides. We are advocating
an open, service-oriented, multi-agent system architecture for the Sensor Web
known as the Sensor Web Agent Platform (SWAP) [24]. This architecture is a
hybrid of the Foundation for Intelligent Physical Agents (FIPA)[25] and OGC
standard architectures. SWAP incorporates the following concepts: Ontologies,
process models, choreography, service directories and facilitators, service-level
agreements and quality of service measures [26]. Ontologies will provide explicit
descriptions of components within SWAP i.e. sensors and sensor data, simu-
lation models, algorithms and applications, and how these components can be
integrated and used by software agents.

Ultimately, users should be able to improve or alter the behaviour of SWAP
by editing the underlying ontologies. SWAP uses the Web Ontology Language
(OWL) as the ontology representation language [27]. The SWAP ontology set is
split along the three cognitive dimensions of space, time and theme [28], with
a fourth dimension for representing data structures (Figure 4). It consists of a
swap-theme ontology that contains thematic concepts, the swap-space ontology
that contains spatial concepts, the swap-time ontology that contains temporal
concepts, and the swap-data ontology that contains concepts for representing
data structures. These upper ontologies [29] provide an extensible framework
that grounds all other ontologies in SWAP. Domain ontologies, i.e. ontologies
for specific application domains, are built by extending the swap-theme ontology.
For example, the vegetation fire ontology contains concepts for building appli-
cations in the fire risk management domain and uses concepts from an existing
earth science ontology, the NASA SWEET ontology [30]. These ontologies rep-
resent an online model of the system, such that any changes in the ontology are
dynamically integrated into the system.

The vegetation fire ontology is being constructed with several objectives in
mind. Primarily, it serves to inform SWAP agents about the things that need to
be reasoned about when fulfilling the AFIS use cases of detecting vegetation fires
and predicting their behaviour to assess risk. Specifically, the ontology describes
the observational properties of concepts and relationships in the vegetation fire
domain. In other words, what is it that allows a certain concept to be observed?
The vision is that agents in the SWAP will marry observational properties to ap-
propriate web-accessible sensors or sensor services appropriate for gathering the
desired observation. We take a similar view to Pennington [31] that observation

246 A. Terhorst et al.

Fig. 4. SWAP Ontology Architecture

links the high level categories of theory, space, time and entitities in order that
process can be understood. We thus concern ourselves with modelling knowledge
about the spatial-temporal aspects of fire (spread, intensity), the entities upon
which fire depends (fuel, topography, weather) and theories or understandings of
how they interact. Observation of the attributes of these ontological categories
allows us to populate process models with values, leading us toward answers
to questions such as ”in which direction will this fire spread?” or ”is this fire
a danger to this infrastructure?”. Users can improve or alter the behaviour of
SWAP by editing any of the underlying ontologies.

The SWAP abstract architecture is split into three layers: Sensor Layer,
Knowledge Layer and Application Layer (Figure 5). The Sensor Layer is popu-
lated by sensor agents that encapsulate individual sensors, sensor systems and
archived observations. They expose sensor data in a uniform way and deal with
any sensor-dependant processing. Data from sensor agents form input to agents
in the second, Knowledge Layer, which consist of workflow, tool and model-
ing agents. Workflow agents receive data from sensor agents and pass this data
through a combination of tool and modeling agents and aggregate the results.
Tool agents provide feature extraction and image processing functionality, for
example, while modeling agents encapsulate predictive models and can pro-
vide projection and data analysis functionality. The processed data stored by
workflow agents forms input to application agents in the Application Layer. Ap-
plication agents combine higher level features provided by workflow agents and
provide different views of these data to different end users. Advanced users would
be able to compose and deploy new workflow agents. Typical functionality pro-
vided by application agents includes enabling users to specify alert conditions in
the system. End users would likely subscribe to more than one application in the
system. The user agent allows a user to integrate data from different application

Sensor Web 247

Fig. 5. SWAP Abstract Architecture

agents. Furthermore, since these data are semantically marked up, they can be
easily integrated with systems within the user’s organisation.

A prototype implementation of SWAP is currently being developed for AFIS
(Figure 6). The prototype will use the aforementioned contextual algorithm that
compares individual pixel blackbody temperature values to those of its neigh-
bouring pixels, to detect pixel blackbody temperature values beyond a specified
threshold. A sensor agent will offer these SEVIRI blackbody temperature values
and feed them to a workflow agent configured to detect temperature hotspots.
The workflow agent receives these data and tasks the contextual algorithm tool
agent to check for hotspots, and communicates detected hotspots to the AFIS ap-
plication server. The AFIS application server (application agent) uses hotspots
retrieved from the workflow agent to issue fire alerts using a SAS and WNS.
The AFIS application server may also be accessed via the AFIS client (user
agent) installed on a user’s computer. The application can be extended by im-
plementing additional agents e.g. a fire spread modeler (modeling agent) that
retrieves current weather data (e.g. wind, humidity and temperature) from a
weather SOS via a weather agent. The fire spread modeler will use the weather
data, and other internal models like terrain and vegetation cover to predict the
spread of detected fires. Another possible extension is to incorporate brightness
temperature from the MODIS sensor into the system.

In terms of the OODA loop, the application layer is where orientation and
decision making occurs, whereas the knowledge layer facilitates observations by

248 A. Terhorst et al.

Fig. 6. SWAP Architecture for AFIS Prototype

providing information extraction and data filtering. The knowledge layer can also
be extended to coordinate actions, by tasking individual sensors in the sensor
layer.

5 Conclusions and Future Work

AFIS is a good example of what the Sensor Web can do to facilitate effective
disaster response. The Sensor Web enhances the OODA loop by providing sev-
eral mechanisms for sensor-rich feedback control. Our proposed service-oriented,
multiagent systems architecture for the Sensor Web (SWAP) extends the current
SWE framework. SWAP facilitates technical and semantic interoperability and
promotes re-usability. The architecture is flexible and extensible: New agents
can be deployed or swapped out in a ’plug and play’ fashion. Workflows can be
easily updated or built from scratch by editing existing or creating new applica-
tion ontologies. Parts of the OODA loop can be offloaded onto software agents
that use machine-reasoning to automatically generate hypotheses. Speeding up
the OODA cycle in this way should enhance the tempo of disaster response.

A number of research questions must be addressed before SWAP can be fully
realised. These include questions relating to the internal model of agents, com-
munication between agents and between agents and non-agent services, message
structure and message payload structure, framework for building ontologies, how

Sensor Web 249

to handle contradictory knowledge, how to integrate different types of ontolo-
gies into the agent paradigm, maintenance of ontologies, data fusion, dynamic
configuration of process chains and appropriate agent development framework.

We intend using the implementation of the SWAP prototype for AFIS to
refine these research questions and expose others. Our plan is to work in close
collaboration with standards generating bodies such as OGC, FIPA, IEEE and
W3C, other research partners and the Open Source Software (OSS) development
community to promote SWAP as a reference architecture for the Sensor Web.

Acknowledgements

AFIS is an initiative of the Meraka Institute (part of the Council for Scientific and
Industrial Research (CSIR)). ESKOM funded the initial development of AFIS.
The re-engineering of AFIS as an OGC compliant platform and research and
development of SWAP is being funded by the CSIR. SWAP is the brainchild of a
global research partnership known as the Sensor Web Alliance (www.sensorweb-
alliance.org).

References

1. Annoni, A., Atkinson, M., Denzer, R., Hecht, L., Millot, M., Pichler, G., Sassen,
A.M., Couturier, M., Alegre, C., Sassier, H., Coene, Y., Marchetti, P.G.: Towards
an Open Disaster Risk Management Service Architecture for INSPIRE and GMES
(version No.9) (February 2005)

2. Rosen, J., Grigg, E., Lanier, J., McGrath, S., Lillibride, S., Sargent, D., Koop, C.E.:
The Future of Command and Control for Disaster Response. IEEE Engineering in
Medicine and Biology 21(5), 56–68 (2002)

3. Osinga, F.: Science, Strategy and War: The Strategic Theory of John Boyd. Eburon
Academic Publishers, Delft (2005)

4. Liang, S.H.L.C., Tao, C.V.: A Distributed Geospatial Infrastructure for the Sensor
Web. Computers & Geosciences 31(2), 221–231 (2005)

5. Zibikowski, R.: Sensor-Rich Feedback Control: A New Paradigm for Flight Control
Inspired by Insect Agility. Instrumentation and Measurement Magazine 7(3), 19–26
(2004)

6. OGC: The OGC Abstract Specification - Topic 0: Abstract Specification Overview.
Document 04-084, Open Geospatial Consortium, Wayland, Massachussets, USA
(2005) (accessed April 14, 2006),
http://portal.opengeospatial.org/files/?artifact id=7560

7. Botts, M., Robin, A., Davidson, J., Simonis, I.: OpenGIS Sensor Web Enable-
ment Architecture Document. Document 06-021r1, Wayland, Massachussets, USA
(March 2006) (accessed July 4, 2006),
http://portal.opengeospatial.org/files/?artifact id=14140

8. Botts, M.: OpenGIS Sensor Model Language (SensorML). Document 05-086, Way-
land, Massachussets, USA (November 2005) (accessed Febuary 2006),
http://portal.opengeospatial.org/files/?artifact id=12606

9. Cox, S.: Observations and Measurements. Document 05-087r5, Wayland, Mas-
sachussets, USA (April 2005) (accessed May 5, 2006),
http://portal.opengeospatial.org/files/?artifact id=14034

http://portal.opengeospatial.org/files/?artifact_id=7560
http://portal.opengeospatial.org/files/?artifact_id=14140
http://portal.opengeospatial.org/files/?artifact_id=12606
http://portal.opengeospatial.org/files/?artifact_id=14034

250 A. Terhorst et al.

10. Simonis, I., Wytzisk, A.: Web Notification Service. Document 03-008r2, Wayland,
Massachussets, USA (April 2003) (accessed Febuary 6, 2006),
http://portal.opengeospatial.org/files/?artifact id=1367

11. Na, A., Priest, M.: Sensor Observation Service. Document 05-088r1, Wayland, Mas-
sachussets, USA (January 2006) (accessed April 1, 2006),
http://portal.opengeospatial.org/files/?artifact id=12846

12. Simonis, I.: Sensor Planning Service. Document 05-089r1, Wayland, Massachussets,
USA (December 2005) (accessed April 1, 2006),
http://portal.opengeospatial.org/files/?artifact id=12971

13. Simonis, I.: Sensor Alert Service. Document 06-028, Wayland, Massachussets, USA
(April 2006) (accessed July 4, 2006),
http://portal.opengeospatial.org/files/?artifact id=13921

14. Nebert, D.: OpenGIS Catalogue Service Implementation Specification. Document
04-021r3, Wayland, Massachussets, USA (August 2004) (accessed, September
2005),
http://portal.opengeospatial.org/files/?artifact id=5929&version=2

15. Fleming, G., van den Bergh, F., Claudel, F., Frost, P.: Sensor Web Enabling the
Advanced Fire Information System. In: Proceedings of the 2005 International Sym-
posium for Environmental Software Systems (ISESS 2005), Hotel do Mar, Sesim-
bra, Portugal (2005) (accessed July 4, 2006),
http://www.isess.org/documents/2005/presentations/

16. Frost, P., Vosloo, H.: Providing Satellite-Based Early Warnings of Fires to Reduce
Fire Flashovers on South African Transmission Lines. In: Proceedings of the 10th
Biennial Australasian Bushfire Conference: Bushfire 2006, ICMS (June 2006),
http://www.fireandbiodiversity.org.au/

17. Davies, D., Kumar, S., Descloitres, J.: Global Fire Monitoring: Use of MODIS
Near-real-time Satellite Data. Geomatics Info Magazine 18(4) (2004)

18. CEOS: Earth Observation Handbook. Committee on Earth Observation Satellites
(2002),
http://www.ceos.org/pages/pub.html#handbook

19. Flasse, S.P., Ceccato, P.: A Contextual Algorithm for AVHRR Fire Detection.
International Journal of Remote Sensing 17(2), 419–424 (1996)

20. Giglio, L., Descloitres, J., Justice, C., Kaufmann, J.: An Enhanced Contextual
Fire Detection Algorithm for MODIS. Remote Sensing of Environment 87, 273–
282 (2003)

21. van den Bergh, F., Frost, P.: A Multi-Temporal Approach to Fire Detection using
MSG Data. In: Proceedings of Multitemp 2005, Biloxi, Mississippi, USA (2005)

22. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. Kluwer Academic Publishers, Deventer (1993),
http://citeseer.ist.psu.edu/gruber93toward.html

23. Struder, R., Benjamins, V.R., Fensel, D.: Knowledge Engineering: Principles and
Methods. IEEE Transactions on Data and Knowledge Engineering 25(1), 161–197
(1998)

24. Moodley, D., Simonis, I.: A New Architecture for the Sensor Web: the SWAP-
Framework. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg
(2006)

25. FIPA: FIPA Abstract Architecture Specification. Technical Specification
SC00001L, Foundation for Intelligent Physical Agents, Geneva, Switzerland (2002),
http://www.fipa.org

http://portal.opengeospatial.org/files/?artifact_id=1367
http://portal.opengeospatial.org/files/?artifact_id=12846
http://portal.opengeospatial.org/files/?artifact_id=12971
http://portal.opengeospatial.org/files/?artifact_id=13921
http://portal.opengeospatial.org/files/?artifact_id=5929&version=2
http://www.isess.org/documents/2005/presentations/
http://www.fireandbiodiversity.org.au/
http://www.ceos.org/pages/pub.html#handbook
http://citeseer.ist.psu.edu/gruber93toward.html
http://www.fipa.org

Sensor Web 251

26. Huhns, M., Singh, M., Burstein, M., Decker, K., Durfee, K., Finin, T., Gasser, T.,
Goradia, H., Jennings, P., Lakkaraju, K., Nakashima, H., Van Dyke Parunak, H.,
Rosenschein, J., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K., Tambe,
M., Wagner, T., Zavafa, L.: Research Directions for Service-Oriented Multiagent
Systems. IEEE Internet Computing, 65–70 (November 2005)

27. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference (February
2004) (accessed July 11, 2006),
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

28. Mennis, J.L., Peuquet, D.J., Qian, L.: A conceptual framework for incorporating
cognitive principles into geographical database representation. International Jour-
nal of Geographical Information Science 14(6), 501–520 (2000)

29. Guarino, N.: Formal Ontology in Information Systems. IOS Press, Amsterdam
(1998)

30. Raskin, R.: Guide to SWEET Ontologies for Earth System Science. Technical re-
port (January 2006) (accessed, February 2006),
http://sweet.jpl.nasa.gov/guide.doc

31. Pennington, D.: Representing the Dimensions of an Ecological Niche. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://sweet.jpl.nasa.gov/guide.doc

Peer-to-Peer Shared Ride Systems

Yun Hui Wu, Lin Jie Guan, and Stephan Winter

Department of Geomatics, The University of Melbourne, Victoria 3010, Australia

Abstract. Shared ride systems match the travel demand of transport clients with
the supply by vehicles, or hosts, such that the clients find rides to their destina-
tions. A peer-to-peer shared ride system allows clients to find rides in an ad-hoc
manner, by negotiating directly with nearby hosts via radio-based communica-
tion. Such a peer-to-peer shared ride system has to deal with various types of
hosts, such as private cars and mass transit vehicles. Their different behaviors af-
fect the negotiation process, and consequently the travel choices. In this paper, we
present and discuss a model of a peer-to-peer shared ride system with different
types of agents. The behavior of the model is investigated in a simulation of dif-
ferent communication and way-finding strategies. We demonstrate that different
types of agents enrich the choices of the clients, and lead to local solutions that
are nearly optimal.

1 Introduction

Research on geosensor networks is typically concerned with the efficient extraction of
information of sensor observations, hence, looking into hardware, protocols, routing of
messages, and data aggregation. The research presented in this chapter is different in
some respects. First of all, its focus lies on movement of the nodes, not on movement
of information. The investigated geosensor network consists of nodes that have indi-
vidual, specific travel intentions. If two nodes meet, one of them can ride piggy-back
on the other one for reasons like saving fuel or traveling faster, depending on the abil-
ities of the two nodes. Secondly, this geosensor network allows for different classes of
nodes. In applications, one will distinguish transportation clients from transportation
hosts. Furthermore, different clients and hosts can be distinguished. For example, there
may be clients that can move only with a host, otherwise they are static, or there may
be clients that travel significantly slower than hosts. Finally, this geosensor network
underlies the well-known communication constraints of all geosensor networks. Nodes
have to communicate to match clients with hosts, but communication is limited to lo-
cal neighborhoods because of scarce resources in terms of battery and bandwidth, and
because of a fragile communication network topology due to node mobility.

The interesting research questions in this context are about communication and trip
planning strategies of nodes, about global optimization of trips from local transportation
network knowledge, and about the general behavior of large transportation geosensor
networks with autonomous nodes. This chapter will address and illuminate the ques-
tions by a concrete realization: a shared ride system for persons traveling by multiple
modes in the city.

Movement of people in a city forms a complex system. It includes the street net-
work and other ways of traveling, traffic rules, traffic infrastructure (e.g., traffic lights,

S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.): GSN 2006, LNCS 4540, pp. 252–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Peer-to-Peer Shared Ride Systems 253

signs) as well as cognition, decisions and actions of intelligent, autonomous agents such
as pedestrians and vehicle drivers. This complex system is burdened by more and more
traffic in expanding cities. In this situation a peer-to-peer shared ride system can provide
relief to the critical situation: it enables people to negotiate in an ad-hoc manner for ride
sharing, and thus, helps reducing traffic, increases urban accessibility, and improves the
integration of different modes of transport. In such a system, pedestrians are the agents
with transport demand, called clients, and vehicles, or hosts, provide the transport sup-
ply. Finding rides in an ad-hoc manner is accomplished by local negotiation between
these agents via radio-based communication.

A peer-to-peer shared ride system has to deal with various types of agents, such
as private cars and mass transit vehicles, or mobile and immobile clients, to cope
adequately with the complexity of urban movements. The agents’ different interests,
capacities and behaviors affect the negotiation process, and consequently, the trips un-
dertaken. For example, hosts can be distinguished by their travel speed, their passenger
capacity and their fare structure, and clients can be distinguished by their mobility.

In this situation a client cannot stay with a simple preference for one mode of travel-
ing, that is, one type of hosts. For example, in general a rushed client would prefer hosts
can deliver a quick and direct trip: taxis. On the other hand, taxis can be in high demand
during peak travel times and catching trams, trains or buses can be an alternative: they
may travel slower but might reach the destination earlier depending on traffic. Hence,
in this paper we present and discuss a model of a peer-to-peer shared ride system with
different types of agents.

Agents, that is, clients and hosts in peer-to-peer shared-ride systems have knowledge
of their environment. They can collect and transmit information from/to their neighbors.
Frequently agents have choices. They have preferences, various optimization criteria,
such as money or time, and are able to make current optimal decisions based on their
knowledge. However, for practical reasons agents have only local and current knowl-
edge of their environment. Previous research [1] investigates the ability to make trip
plans from different levels of local knowledge. It shows that a mid-range communica-
tion depth is both efficient (needing less communication messages than complete cur-
rent knowledge) and effective (leading to a travel time comparable to complete current
knowledge). This investigation was based on a simulation with homogeneous hosts and
an immobile client. This paper poses the hypothesis that involving other types of agents,
the trips will change significantly, but mid-range communication is still both efficient
and effective compared to other communication strategies.

This hypothesis will be approached by simulation. The simulation is realized as a
multi-agent system, allowing us to model and understand individual behavior of dif-
ferent agents. The approach requires identifying and specifying the essential aspects
of an urban shared ride system, implementing them in a multi-agent system, and then
running large numbers of random experiments to generate the required evidence. The
model can be investigated by systematically varying the design parameters and studying
the peer-to-peer shared ride system behavior.

This paper has the following structure. Section 2 reviews previous and related re-
search. Section 3 discusses the types of agents in shared ride systems. Section 5 presents

254 Y.H. Wu, L.J. Guan, and S. Winter

the design of a multi-agent simulation, and the simulation results are provided in Sec-
tion 6. Section 7 concludes with a discussion and future work.

2 Literature Review

This review consists of a literature overview of shared ride systems in general, and
of agent-based simulation of shared ride system in particular, with special attention to
previous research on a peer-to-peer shared ride system.

2.1 Shared Ride Systems

In the real world, shared ride systems exist in many forms and names, such as carpool-
ing, vanpooling, dial-a-ride, or find-a-ride. Shared ride systems also have various levels
of technological support, such as being based simply on social convention, or using a
centralized database with pre-registration and/or pre-booking via a Web interface.

Carpooling/Vanpooling can be seen as a prearranged shared ride service between
home and workplace to save up parking spaces [2]. Traditional carpooling/vanpooling
services are organized by private companies and are not door-to-door. People with reg-
ular commuting schedules usually meet in a place to share vehicles running on prear-
ranged times and routes. Van pooling is limited by the provider’s service area and not
viable for areas or individual origins or destinations that do not have the critical mass
of people using the service. New users can only participate in existing poolings, or they
can create a new pooling with others.

Mass transit systems, like the underground, trains, buses and trams, run on predefined
schedules and routes. Being government funded or subsidized, the fares are typically
lower than the costs of private means of transportation. In addition to guaranteeing mo-
bility and access for everybody, this shall also encourage people to mitigate individual
car traffic. However, such a shared ride is restricted to fixed time schedules and routes,
which is less comfortable than many private transportation alternatives.

To better satisfy users, dial-a-ride systems have been initiated. Dial-a-ride systems
can offer more flexible and comfortable door-to-door rides, chiefly by commercial vehi-
cles and taxis [3]. To utilize the vehicles’ passenger capacity, drivers can pick up other
passengers before reaching the destination of the first customer. The authors imple-
ment a dynamic dial-a-ride system, which can re-optimize routes after picking up new
customers during services. Therefore, this dynamic dial-a-ride system supports a many-
to-many service—customers have different departures and destinations—and does not
need booking in advance.

Web-based shared ride systems include Google Ridefinder1, Ride Now!2, RidePro33,
eRideShare4, or Mitfahrzentrale5. These applications provide textual Web interfaces to
attract registrations of shared ride clients and hosts, and are maintained by local and

1 http://labs.google.com/ridefinder.
2 http://www.ridenow.org
3 http://www.ridepro.net
4 http://www.erideshare.com
5 http://www.mitfahrzentrale.de

http://labs.google.com/ridefinder
http://www.ridenow.org
http://www.ridepro.net
http://www.erideshare.com
http://www.mitfahrzentrale.de

Peer-to-Peer Shared Ride Systems 255

regional agencies with central databases. Mediated trips are usually regional or na-
tional travels, with inner urban travels generally not catered for. To request or offer a
ride, users (clients and hosts) need to provide their home addresses, cell phone number,
email addresses and requested trip details. Then the databases match requests and of-
fers immediately, and feed back a contact list of potential shared ride hosts or clients.
The choice is left to the users who can email or call their selections. Agencies need
high-powered workstations, database servers and internet connectivity to run such an
application. Personal computers or mobile devices with Internet connectivity are nec-
essary as data terminals for the users.

2.2 Agent-Based Simulation and Shared Ride Applications

Simulation is an accepted approach to investigate the behavior of complex systems in
general, and of traffic [4,5] and sensor networks in particular. Simulation allows to
study information spreading in mobile ad-hoc sensor networks, MANETs [6,7], as well
as in more specialized vehicle ad-hoc sensor networks, VANETs [8]. For the present
problem, a geosensor network of heterogenous nodes with travel intentions, with au-
tonomous travel behavior, and spatial restrictions to move, a multi-agent system is cho-
sen for its simulation. Agent classes are designed to represent the different types of
moving agents.

Several established agent-based simulation libraries exist that simplify modeling.
Object-Based Environment for Urban Simulation, OBEUS6, has been developed as a
simplest implementation of geographic automata systems in .Net [9,10]. It is designed
for urban processes and built in a cellular automata model with transition rules in form
of functions. Entities in OBEUS can be one of two types, either mobile or immobile
entities. In OBEUS no direct relationship is allowed between non-fixed objects. That
means that OBEUS is not suitable for our simulation of locally communicating mobile
agents. Swarm7 is one of the popular libraries based on Objective C and has a Java wrap-
per. RePast8 is a newer Swarm-like conceptual toolkit [11]. RePast is a free open source
toolkit core in Java, while it has three implementations in Java, .Net and Python. Both
approaches support to program multi-agent systems that are composed of larger num-
bers of agents with functions describing their behavior. RePast was used successfully
for a large-scale peer-to-peer shared ride system simulation [12]. However, installing
and using libraries is in itself a larger effort due to the constraints imposed by a given
system design, so we decided to develop our system from scratch.

Previous research on a peer-to-peer shared ride system proposes a trip planning
model on ad-hoc mobile geosensor networks [13]. The peer-to-peer system was de-
signed to solve the problem of capacity limitations of centralized travel planning sys-
tems with large numbers of concurrent users in large dynamic networks and ad-hoc ride
requests. The authors demonstrate that without a central service, shared ride trip plan-
ning with limited knowledge is possible and computationally efficient in a dynamic en-
vironment. They later implement this scenario with a simulation, in which clients with

6 OBEUS can be downloaded from http://www.geosimulationbook.com
7 http://www.swarm.org
8 http://repast.sourceforge.net

http://www.geosimulationbook.com
http://www.swarm.org
http://repast.sourceforge.net

256 Y.H. Wu, L.J. Guan, and S. Winter

transportation demand, and hosts with transportation supply communicate on a radio
base to negotiate and plan trips in a continuously changing environment [1,14]. They
design a mechanism for the negotiation process and investigates three communication
strategies with different communication neighborhoods. Hosts are homogeneous, and
clients are immobile in these experiments. The authors conclude that mid-range com-
munication strategy in mobile geosensor network is both effective (leading to travel
time comparable to complete current knowledge) and efficient (leading to less com-
munication messages than those for complete transportation knowledge) compared to
unconstrained or short-range communication.

3 Agents in Peer-to-peer Shared Ride Systems

Participants in peer-to-peer shared ride systems, to be modeled as geosensor network
nodes later, are capable of perceiving their environment, of collecting information and
making decisions, and of communicating where necessary. Particularly, peers are mo-
bile, and some can move with other peers. In this section, immobile and mobile clients
are identified, and three typical kinds of hosts (i.e., mass transit, taxis and private cars)
with distinct economic and operational characteristics, in order to reflect better the prop-
erties of realistic shared ride systems in a simulation.

3.1 Clients

Real world clients have a desire to travel to their destinations and depend on rides from
hosts. Immobile and mobile clients can be distinguished. Immobile clients rely com-
pletely on rides in order to move. Mobile clients can alternatively move on their own,
but far slower than taking rides. The mobility of clients can depend on their preferences,
their luggage, or their company (e.g., children).

Some clients might stick to preselected routes (e.g., the shortest) and only look for
rides along their route. Alternatively, clients with a desire to optimize routes using cost
functions such as travel time, number of transfers, or trip fares, will accept detours, as
long as they promise to reach the destination for lower cost. For some clients, shorter
travel times are more important than trip fares, while budget clients favor cheaper rides.
Fewer transfers are more attractive to clients who appreciate comfortable trips, while
scenic views would be a cost function (to maximize) for tourist clients. Frequently
clients balance these factors with some subjective weighting. Furthermore, clients can
have other preferences, such as for types of hosts, or for specific profiles of vehicle
drivers.

Another factor to consider is the knowledge of the client. While the general assump-
tion is that the client knows the street network for trip planning, it makes a difference
whether the client knows also the mass transit network and time tables, or typical traffic
patterns in the city (e.g., main streets experience more traffic than others).

3.2 Hosts in Mass Transit

Mass transit in a city includes buses, trams, trains, underground, and ferries. Gener-
ally, mass transit vehicles carry more passengers compared to other means of transport,

Peer-to-Peer Shared Ride Systems 257

although with less comfort and privacy. Travel fares are relatively cheap, especially with
flat fare structures on longer distances, or with tickets that are interchangeably valid on
various modes of mass transit. Often fares are charged by time only, regardless how
long the trip.

Mass transit follows fixed timetables, typically with larger gaps between midnight
and early morning and varying frequency over the day. They run on predefined routes
back and forth, and passengers are only allowed to get on or off at stops. This means
that mass transit does not provide door-to-door transport, and some areas are not served
at all. Some means of mass transit run on their own line network, e.g., trains, trams and
subway, or have reserved lanes, and are less affected by other traffic. This means that
mass transit vehicles may be faster than street traffic bound vehicles.

3.3 Taxis

Taxis are more comfortable and convenient compared to mass transit. Taxis can reach
every location in a city’s street network, and can be called at any time of the day. Pas-
sengers can head directly to their destinations without compulsive intermediate stops
or transfers. Detouring, change of destination, and stopovers are also possible during
travel.

The main disadvantages of taxis are a limited passenger capacity, and correspond-
ingly, a high trip fare. Normally, taxis have about four seats for passengers, but these
are only shared by a group sharing the same trip. Taxis are charged by a combination of
travel distance and time; sometimes a flag fall is added. This means that taxis are more
suitable when time or convenience is more valued than money.

3.4 Private Cars

As hosts of shared rides, private cars are similar to taxis in some respects: they share the
advantage of comfort, and the disadvantage of low passenger capacity. The difference is
that private cars are owned by their drivers, and hence, are considered as private space,
or proxemics [15].

Nevertheless, private car drivers may be willing to offer a ride if they get some incen-
tives. But they are unlikely to serve clients off their route. Rather they pick up clients
anywhere along their own trip, and give them a ride along their own route. Private car
drivers may also have rigid interests and preferences in selecting clients, such as non-
smoking clients, or clients of a specific gender.

Incentives for the car drivers could be nonmonetary, such as being allowed to use
high-occupancy vehicle lanes with passengers on board. Even if they charge fees pro-
portional to the traveled distance, their rates will be lower than taxi rates because the
car drivers’ interest is mostly sharing costs.

4 Communication in Peer-to-Peer Shared Ride Systems

Peer-to-peer communication in a shared ride application enables nearby agents to col-
laboratively solve the shared ride trip planning. To make optimal decisions, agents need

258 Y.H. Wu, L.J. Guan, and S. Winter

to consider all transportation information. However, in dynamic traffic, agents have to
make decisions with local knowledge only. This section discusses high-level communi-
cation protocols and strategies, the agents’ negotiation mechanism and data collection
in a peer-to-peer shared ride system, as they are proposed in the literature and studied
in simulations [1].

4.1 Communication Protocol and Strategies

In a peer-to-peer shared ride system, the trip planning clients depend on transportation
information from hosts. However, peer-to-peer communication for real-time decisions
in dynamic street traffic enables only local communication strategies. This means an
individual client may not reach or may not want to reach all hosts in the street network,
and hence, has to plan a trip with local knowledge only. Nagel suggests that trip plans
always include a start time, a start position, a destination and a sequence of nodes in
between [5]. In shared ride planning, agents are additionally interested in the agents in-
volved in the trip, arrival times, and travel fare. To enable negotiations between agents
for trip plans, a communication protocol is designed for messages of the structure spec-
ified in Table 1. The details of the communication model and protocol are specified
elsewhere [1].

Table 1. Message elements.

Field Type Description
1 type char request r, offer o, booking b
2 route [node] requested or offered route
3 time int start time of the route in the message
4 agents [int] record of all identifiers of agents that transfer this message
5 speed float speed of the original sender of this message
6 fare float travel fare of the offered route

In a peer-to-peer system agents radio broadcast messages to their neighbors. Their
radio range is limited according to the broadcasting technologies and the broadcasting
power. Distant agents can be reached by forwarding messages (multi-hop broadcast-
ing). For a peer-to-peer shared ride system the communication window—the synchro-
nized time all agents listen and broadcast—requires to be long enough to accomplish a
complete negotiation process, consisting of a request, offers, and a booking. So far trip
planning with unconstrained, short-range and mid-range communication has been in-
vestigated in simulations. Unconstrained communication means that messages flood to
the deepest agents in network, as long as agents are connected. Short-range communi-
cation means that agents only communicate to agents within their radio range (single-
hop). In mid-range communication, agents forward messages for several hops. The
negotiation process will be simulated for different communication ranges to investigate
trip planning with different levels of transportation network knowledge. However, it is
clear that the unconstrained communication strategy is not feasible in reality and used
here only as a reference for the trip planning with (theoretically) maximum real-time
information.

Peer-to-Peer Shared Ride Systems 259

4.2 The Negotiation Mechanism

The mechanism to process the negotiations is shown in Figure 1. Clients initiate a ne-
gotiation by sending a request. Hosts respond with offers, clients make a selection, and
the negotiation finishes with a booking made by the client. The three communication
phases happen sequentially within one communication window. All requests, offers and
booking messages are in the format of message, and are identified by type and the orig-
inal sender in agents. After each negotiation, communication devices fall asleep to save
energy, and agents move until the next negotiation process happens. Agents do not keep
previous negotiations in memory. Therefore, there is no cancelation process integrated,
instead booked rides are regarded as being canceled when no rebooking/confirmation
happens in the following negotiation.

Fig. 1. The cycle of negotiations and movements within two time intervals

So far, only one client is generated in an individual simulation. All hosts serve this
single client.

5 Formalization in a Multi-agent Simulation

This section presents a specification of a peer-to-peer shared ride simulation, with the
types of agents (i.e., geosensor nodes) and their behavior as discussed above. The sim-
ulation is implemented in an object-oriented architecture using Java. Design details of
the simulation model and related algorithms are elaborated by [16].

In our peer-to-peer shared ride system, agents have knowledge of their locations
within the street network, negotiate with their neighbors for shared rides, make de-
cisions according to their desires and intentions, and travel until the next negotiation
takes place. Therefore, this system can be seen as a geographic automata system [10]:
it has states, and state transitions, in particular the movements.

To implement geographic automata systems, Benenson and Torrens [10] suggest es-
tablishing a spatially restricted network with immobile and mobile agents, neighbor-
hood relationships and behavior rules. Due to their interest on urban objects, such as
buildings or residential addresses, they use a cellular network. In contrast, agents in
shared ride systems move in street networks, and hence, we use a grid network to model

260 Y.H. Wu, L.J. Guan, and S. Winter

a real street network, with nodes representing street intersections and edges the street
segments. Agents run in the grid network, and negotiate in an ad-hoc manner for ride
sharing.

5.1 Agent Parameters and Behavior

Agents are designed in a class hierarchy (Figure 2), because they all have some com-
mon features and behavior. These common features and behavior are identified and
encapsulated in the base class agent.

Fig. 2. Class hierarchy of agents

Common features include the agent’s identifier, its speed, its type, its state, its loca-
tion in the current simulation environment, some information on its travel plans, such
as the destination, and a temporary container for negotiation messages. The travel route
contains departure and destination, and for some agents the nodes in between. For in-
vestigation purposes, a second container stores details of booked shared rides. Common
behavior includes how to move to the next node, how to listen to neighbors and how to
obtain knowledge about current position and state.

The classes client and host are derived from agent, and have additional properties
and characteristic behavior. Their states, travel routes and current position can change
over time, but type and speed are constant within a simulation.

5.2 Client Agents

In the simulation, there are two types of clients: immobile clients, taking rides only, and
mobile clients that are also able to move. The first type of client needs to be picked up from
their location. The second type of client is able to move, which enables them to move to
another location if they can get a ride there sooner. For clients, a (time-dependent) shortest
path algorithm is needed for trip planning. The algorithm implemented is the heuristic
lifelong planning A* algorithm [17]. This algorithm is adaptive to the dynamic traffic
network. Given various cost functions (e.g., travel time or trip fare), this algorithm allows
clients achieving different goals such as the quickest or the cheapest trip.

5.3 Host Agents

There are three kinds of hosts in this simulation: private cars, taxis and mass transit.
These hosts vary in their mobility, in their routing flexibility, in their passenger ca-
pacity, and in their economic models. Implemented hosts have two modes to respond to

Peer-to-Peer Shared Ride Systems 261

requested trips: they can offer to share sections of their own travel plans that match with
requests, or they can leave their predefined travel route and make a detour for clients. A
third alternative—hosts offering their travel route ahead no matter how relevant this is
to a request—would only increase the communication costs.

5.4 Quality of Trip Planning

Local communication provides limited knowledge for clients, accessing only the travel
plans of nearby hosts for shared ride trip planning. This knowledge is limited from a
spatial (‘nearby’, which depends here on the communication strategy: short-range, mid-
range, or unconstrained) and temporal perspective (‘now’). With this knowledge, clients
in most cases can only choose sub-optimal trips. To investigate the consequences, an
observer agent is designed in the simulation to enable a hindsight investigation of a
global optimal trip. The observer is capable of monitoring the entire transportation net-
work within the geosensor network. This global optimal trip can be compared with the
client’s trip to evaluate trip quality in the simulation.

6 Simulating Shared Rides with Diverse Agents

The specified peer-to-peer shared ride system simulation is tested for different types of
agents. For the purpose of the test, travel time was chosen as the optimization criterion
to look for the fastest trip. The simulation produces output in the form of text, which
can be stored or visualized. Each result presented in this section summarizes 1000 sim-
ulation runs. For the experiments, hosts were parameterized according to Table 2.

Table 2. Parameter settings of various host types

Type Capa-
city

Speed Route Detour Fare rate Others

1 private car 2 1 fix FALSE 0.5
2 taxi 1 1 variable TRUE 1 flag fall is 1
3 mass transit 10 2 predefined FALSE - schedule; one-off charge is 2

6.1 Global Optimal Trips Compared with Sub-optimal Trips

This experiment compares global optimal trips, computed posteriori for each simula-
tion, with the client’s trips made with two different communication strategies: mid-
range (comRange = 3) and unconstrained (comRange = 20) in a grid network of 10×10
nodes (the radio range is generally set to one segment). In this experiment the client is
immobile and follows the geodesic route from node (3, 5) to node (8, 5), that is, the trip
is in the center of the network and has a length of five segments. Homogeneous hosts
of type private car are generated at random locations and with random routes of twelve
segments length. Host density, defined as the proportion of the number of hosts and the
number of nodes of the grid network, is fix. Figure 3 shows the average travel times of
trips made versus the average global optimal travel time for various host densities.

262 Y.H. Wu, L.J. Guan, and S. Winter

Fig. 3. Comparison of global optimal trips vs. sub-optimal trips realized by mid-range and uncon-
strained communication strategies

The experiment shows two significant results. First, a mid-range communication
strategy is acceptable for all host densities; the unconstrained strategy, which is not fea-
sible in practical applications, would improve travel times only marginally. Secondly,
even complete current transport network knowledge as provided by the unconstrained
strategy reaches only sub-optimal results, not considering future travel opportunities in
time. – Since global knowledge is not accessible by clients, global optimal trips are not
considered further in this paper.

6.2 Heterogeneous Clients Under Diverse Communication Strategies

This experiment compares the efficiency and effectiveness of diverse communication
strategies: short-range (comRange =1), mid-range (comRange = 3) and unconstrained
(comRange = 20) in a grid network of 10 × 10 nodes. There are four types of clients
looking for the fastest trip: 1) an immobile client who sticks to the geodesic route, 2)
an immobile client who is willing to make detours, 3) a mobile client who sticks to
the geodesic route, and 4) a mobile client who is willing to make detours. Each client
departs at (3, 5) and heads to the destination at (8, 5). Mobile clients have a walking
speed of vc = 0.25 edges per time unit, while the the homogenous host speed is vh = 1
edge per time unit. The 72 hosts are all private cars.

Figure 4a shows the average time of shared rides by various clients, and Figure 4b
shows the corresponding numbers of broadcasted messages. The experiment demon-
strates again that (short-range and) mid-range communication delivers trips nearly as
fast as unconstrained communication, for all densities of hosts. It also shows that short-
range and mid-range communication produce much less messages than unconstrained
communication. Furthermore, the client’s ability to move and their flexibility to make

Peer-to-Peer Shared Ride Systems 263

Fig. 4. Comparison of trip planning under three communication strategies

detours make a significant difference in travel time. Mobile and flexible clients, due to
their increased choices, have advantages over immobile or inflexible clients.

6.3 Geo-routing Quality with Heterogeneous Hosts Using Local Knowledge

This section investigates a case with mobile, flexible clients in a transport network of
various types of hosts in a grid world of 20 × 20 nodes. Mass transit is introduced as
two bus lines (Figure 5), with one bus line partially overlapping with the direct route of
the client. One new type of agent is the bus stop which is a static agent participating in
negotiations and knowing the bus schedules.

Five experiments have been conducted, all with the same density of transportation
hosts but with different proportions: 1) 144 private cars only; 2) 96 private cars and 48
buses (12 buses run in each direction of the two bus lines); 3) 96 private cars, 48 buses

264 Y.H. Wu, L.J. Guan, and S. Winter

Fig. 5. The two bus lines in the grid street network

and 24 bus stops to help transferring bus travel information; 4) 96 private cars and 48
taxis; and 5) 48 private cars, 48 taxis, 48 buses and 24 bus stops. The average travel
time and number of messages are shown in Figure 6.

The results show that the mix of host types has a significant influence on travel times
as well as on communication efforts. In general, the presence of taxis in the network
reduces average travel times, since once a taxi has picked up the client, the client travels
along the shortest path. Buses also reduce the travel time because they are assumed to
travel with double speed of cars (Table 2). Bus stops do not seem to have that impor-
tance, but this may be distorted by the relatively dense bus intervals in this experiment.

6.4 Mobility Models of Agents

Up to now, private cars and unoccupied taxis are traveling by random. In a more so-
phisticated agent mobility model host agents may have a preference of traveling central
streets [18,19]. One of these models assigns connected segments of the grid street net-
work to named streets. In this heterogeneous network of named streets, centrality was
determined by betweeness centrality [20] and used to attract host traffic proportionally.

Clients aware of this behavior of hosts prefer to look for transfers at central street
intersections, because there they have higher chances to find connecting hosts. To in-
vestigate this mobility model, experiments have to focus on the various behaviors of
agents with different knowledge of the centrality in the street network. In the first ex-
periment, the 120 hosts have no knowledge of centrality, and simply employ a random
mobility model. Accordingly, the clients do not consider centrality either and follow
strictly the graph geodesic between start and destination. In the second experiment,

Peer-to-Peer Shared Ride Systems 265

Fig. 6. Trip planning using local knowledge in multi-modal traffic

hosts have knowledge of centrality and adapt their mobility. Clients in this experiment
still do ignore this knowledge and apply their traditional trip planning strategy. In the
third experiment, finally, the clients consider centrality in their trip planning by favoring
rides that end at central intersections.

Figure 7 visualizes the host distributions in the chosen named street network, where
the hosts use the knowledge of central streets. The distribution of hosts is no longer
equal, and the pattern shows the linear effects of long streets.

Then Figure 8 presents the results of the three experiments: the bars showing av-
erage travel times, and the points connected by a line showing the average number of
messages. The smaller improvement of travel times between the first and the second
experiment can be explained by the different qualities of the shape of the host routes:
In average, the new mobility model leads to more elongated host routes than random
movement, and hence, a single ride is in average more useful for the client. But more

266 Y.H. Wu, L.J. Guan, and S. Winter

Fig. 7. Visualization of the host distributions, demonstrating a mobility model recognizing main
streets and side streets in a grid street network

Fig. 8. Comparison of agents having different level of knowledge

impressive is the advantage for the client when adapting to the travel patterns of hosts,
as shown in the third experiment. At the same time the numbers of messages increase
because the clients are traveling through streets with more traffic.

6.5 Multi-criteria Optimization

The previous experiments were conducted on the assumption that clients want fastest
trips. Nevertheless, in the real world people consider more factors when planning their
trips. Other considered factors include the travel fare, the convenience (in terms of num-
bers of transfers), comfort, or security. More criteria make the planning of trips more

Peer-to-Peer Shared Ride Systems 267

complex: to make an optimal decision, people need to balance various criteria. This
means the decision may not be optimal regarding a single criterion but good enough
as a whole. In this section experiments are designed to investigate multi-criteria trip
planning in peer-to-peer shared ride systems.

Three experiments are conducted, according to three types of client preferences: 1)
clients prefer the fastest trip; 2) clients consider both travel time and fare; and 3) clients
care about travel fare only. The third experiment has a trivial result: in the simulation,
walking is always the cheapest way to travel, and the walking time is predictable, too.
Therefore, to avoid the trivial case in this experiment, it is assumed that all clients are
immobile, but would not mind making detours. Parameters in this experiment are set as
before, with a host density in this case of 0.36, and mixed host types.

Multi-criteria optimization is implemented as a k shortest path algorithm [21] for
the primary cost criterion, followed by a search for the optimal candidate according to
the secondary cost criterion in this set of k candidates. It is assumed that clients choose
travel time as primary, and travel fare as secondary criterion, and k is set to three in this
experiment.

Figure 9 presents the three experiments, the bars showing average travel time, and
the points connected by a line showing average travel fares. Multi-criteria trip planning
(the second experiment) is neither fastest nor cheapest, but relative cheaper and quicker
compared to the first and third experiment respectively. The average travel time of the
multi-criteria optimization is only slightly above the fastest trip (note that the scales do
not start at 0). The average travel fare, however, can be reduced significantly by taking
this criterion under consideration as well.

Fig. 9. Comparison of multi-criteria vs. single-criterion trip planning

268 Y.H. Wu, L.J. Guan, and S. Winter

7 Conclusions and Outlook

This chapter extends the context of geosensor networks—wireless mobile location-
aware sensor networks—to an application in the field of transportation. A peer-to-peer
shared ride system is presented composed of mobile geosensor nodes, which are either
transportation hosts or clients. These nodes have heterogeneous properties, behaviors
and interests. Since they are able to communicate over short distances with each other
to look for or to provide rides in an ad-hoc manner, nearby nodes collaboratively try to
optimize the satisfaction of the individual interests.

This chapter has been developed from previous research of a peer-to-peer shared ride
system with an immobile client following a geodesic route, and homogeneous hosts that
move on the basis of a random walking model. The previous research was extended by
the introduction of mobile and flexible clients, various types of hosts, other agents, and
more realistic mobility models. Finally, the clients were enabled to optimize their trips
for multiple criteria.

Reviewing the results, multiple types of agents enrich the choices of clients, which
leads to trips of lower costs. The largest impact has a system with mobile and flexible
clients and all types of host agents, since it provides the largest choice. Mid-range com-
munication still delivers trips of durations close to those from a (fictional) unconstrained
communication range, but has much lower communication costs. Hence, the hypothesis
has been proven. Since all experiments were parameterized by the density of hosts, and
not by their number, one can expect that the observed results hold for longer trips as
well, and also for other forms of street networks.

It is also shown that trips derived from local knowledge (of any communication range)
may not be optimal from a global view. Better rides provided by distant hosts and hosts
entering the traffic after the client has made a booking are always possible, and can be
documented from a subsequent analysis of the simulation protocol. This problem can be
approached by more intelligent wayfinding heuristics of the clients. Clients could, for
example, learn from experience and use this knowledge in predicting chances of being
picked up at specific nodes. For this purpose, a client could exploit a hierarchy in the street
network, or known traffic counts at particular intersections, to assess potential transfer
points in the trip planning process. This idea is being investigated elsewhere [19].

Although the mobility models used in this chapter are sufficient for the present sim-
ulation purposes, they can still be further refined to model more aspects of real traffic
flow, such as cycles over the time of the day, or congestions. It is shown, however, that it
brings advantages to trip planning if the random walker model is replaced by a more so-
phisticated mobility model where agents have knowledge of the main streets, and have
a preference for using them. Hence, other meaningful improvements of the mobility
models, and their consideration by a trip planning agent, are expected to show further
advantages for the trip costs.

Multi-criteria optimization is essential for more intelligent wayfinding behavior. For
example, clients may be interested to reduce their number of transfers and their trip
travel time. The introduction of different fare structures, and the choice of the cheapest
trip (or of a balanced cheap trip in a multi-criteria optimization) already tests economic
concepts of a peer-to-peer shared ride system. The inclusion of more criteria requires
another multi-criteria optimization strategy.

Peer-to-Peer Shared Ride Systems 269

Another future extension of this system comes with admitting other clients into the
simulation (clientNum>1). Then the passenger capacity of the hosts becomes a critical
resource. Clients would compete with each other, which might recommend more book-
ing ahead. But more aggressive booking strategies conflict with the hosts’ interests of
traveling with occupied vehicles, since travel plans are highly dynamic. Balancing these
interests needs to be investigated.

References

1. Winter, S., Nittel, S.: Ad-Hoc Shared-Ride Trip Planning by Mobile Geosensor Networks.
International Journal of Geographical Information Science 20(8), 899–916 (2006)

2. Miller, G.K., Green, M.A.: Commuter Van Programs - An Assessment. Traffic Quarterly 31,
33–57 (1977)

3. Colorni, A., Righini, G.: Modeling and optimizing dynamic dial-a-ride problems. Interna-
tional Transactions in Operational Research 8, 155–166 (2001)

4. Burmeister, B., Haddadi, A., Matylis, G.: Application of Multi-Agent Systems in Traffic and
Transportation. IEE Proceedings in Software Engineering 144(1), 51–60 (1997)

5. Nagel, K.: Traffic Networks. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs
and Networks. VCH Verlagsgesellschaft mbH, Weinheim, Germany (2002)

6. Nittel, S., Duckham, M., Kulik, L.: Information Dissemination in Mobile Ad-Hoc Geosen-
sor Networks. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS,
vol. 3234, pp. 206–222. Springer, Heidelberg (2004)

7. Wolfson, O., Xu, B., Yin, H., Rishe, N.: Resource Discovery Using Spatio-temporal Infor-
mation in Mobile Ad-Hoc Networks. In: Li, K.-J., Vangenot, C. (eds.) W2GIS 2005. LNCS,
vol. 3833, pp. 129–142. Springer, Heidelberg (2005)

8. Sormani, D., Turconi, G., Costa, P., Frey, D., Migiavacca, M., Mottola, L.: Towards
lightweight information dissemination in inter-vehicular networks. In: VANET 2006: Pro-
ceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks, pp. 20–29. ACM
Press, New York (2006)

9. Benenson, I., Aronovich, S., Noam, S.: OBEUS: Object-Based Environment for Urban Simu-
lations. In: Pullar, D., ed.: 6th International Conference on GeoComputation, Brisbane, Aus-
tralia, University of Queensland (2001) (CD–ROM)

10. Benenson, I., Torrens, P.M.: Geosimulation: Automata-based Modeling of Urban Phenom-
ena. John Wiley & Sons, Chichester (2004)

11. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simula-
tion 16(1), 1–25 (2006)

12. Tessmann, S.: Time Geography for Efficient Shared-Ride Trip Planning in Transportation
Networks. Diploma thesis, University of Münster (2006)

13. Winter, S., Nittel, S.: Shared Ride Trip Planning with Geosensor Networks. In: Brox, C.,
Krüger, A., Simonis, I. (eds.) Geosensornetzwerke - von der Forschung zur praktischen An-
wendung, Natur & Wissenschaft, Solingen, Germany. IfGIprints, vol. 23, pp. 135–146 (2005)

14. Winter, S., Nittel, S., Nural, A., Cao, T.: Shared Ride Trips in Large Transportation Networks.
In: Miller, H.J. (ed.) Symposium on Societies and Cities in the Age of Instant Access, Salt
Lake City, Utah (2005)

15. Hall, E.T.: The Hidden Dimension, Doubleday & Company, Garden City, NY (1966)
16. Wu, Y.H.: Agent behavior in peer-to-peer shared ride systems. Master thesis, Department of

Geomatics, The University of Melbourne (2007)

270 Y.H. Wu, L.J. Guan, and S. Winter

17. Koenig, S., Likhachev, M., Furcy, D.: Lifelong Planning A*. Artificial Intelligence 155(1-2),
93–146 (2004)

18. Leigh, R.: Agent mobility model based on street centrality. Final year project report, Depart-
ment of Geomatics, The University of Melbourne (2006)

19. Gaisbauer, C., Winter, S.: Shared Ride Trip Planning with Free Route Choice. In: Raubal, M.,
Miller, H.J., Frank, A.U., Goodchild, M. (eds.) Geographic Information Science, Münster,
Germany. IfGI Prints, vol. 28, pp. 73–75. Institute for Geoinformatics, University of Münster
(2006)

20. Borgatti, S.P.: Centrality and Network Flow. Social Networks 27(1), 55–71 (2005)
21. Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Science 17(11),

712–716 (1971)

Author Index

Agouris, Peggy 86
Agrawal, Gagan 151
Ahmad, Yanif 66
Akdere, Mert 131

Bakalov, Petko 109
Bedford, Keith 151
Botts, Mike 175

Çetintemel, Uğur 66, 131
Crispell, Daniel 131

Davidson, John 175
Deese, Heather E. 213
Deligiannakis, Antonios 45

Ferentinos, Konstantinos P. 9
Ferhatosmanoglu, Hakan 151
Frost, Philip 239

Guan, Lin Jie 252
Gunopulos, Dimitrios 86

Hwang, Jeong-Hyon 66

Jannotti, John 131

Kalogeraki, Vana 86
King, Kraig 191
Kotidis, Yannis 45
Kulik, Lars 25

Labrinidis, Alexandros 1
Li, Ron 151

Mao, Jie 131
McFerren, Graeme 239
Moodley, Deshendran 239

Neville, Francois 213
Nittel, Silvia 1, 9
Niu, Xutong 151

Percivall, George 175
Pettigrew, Neal R. 213

Reed, Carl 175
Roesler, Collin S. 213
Roos, Stacey 239

Simonis, Ingo 239
Stefanidis, Anthony 1, 86
Stewart Hornsby, Kathleen 191

Tanin, Egemen 25
Tatbul, Nesime 66
Taubin, Gabriel 131
Terhorst, Andrew 239
Trigoni, Niki 9
Tsotras, Vassilis J. 109

Umer, Muhammad 25

van den Bergh, Frans 239

Winter, Stephan 252
Wu, Yun Hui 252

Xing, Ying 66

Zdonik, Stan 66

	Title Page
	Preface
	Organization
	Table of Contents
	Introduction to Advances in Geosensor Networks
	Section 1: Data Acquisition and Processing
	Section 2: Data Analysis and Integration
	Section 3: Applications

	Data Acquisition and Processing
	Impact of Drifter Deployment on the Quality of Ocean Sensing
	Introduction
	Background
	Ocean Drifters
	Wireless Communication for Ocean Environments
	Data Management for Ocean Sensor Networks

	Problem Description
	Impact of Deployment Strategy
	Resource Management
	Conclusions
	References

	Efficient Data Collection and Selective Queries in Sensor Networks
	Introduction
	Related Work
	A Location Based Aggregation Algorithm
	Algorithm Overview
	Shortcomings and Overheads

	Experimental Evaluation
	Evaluation Parameters
	Simulation Setup and Methodology
	Results
	Discussion

	Selectivity Under Changing Conditions
	Conclusions
	References

	Exploiting Spatio-temporal Correlations for Data Processing in Sensor Networks
	Introduction
	Characteristics of Sensor Nodes
	A Lossy Compression Framework for Historical Measurements
	The SBR Framework
	Base Signal Construction
	Analysis and Evaluation
	Extensions

	Approximate In-Network Data Aggregation
	Algorithmic Challenges
	Algorithm Overview
	Experimental Evaluation

	Design of Data-Centric Sensor Networks
	Snapshot Overview
	Examples of Snapshot Queries
	Evidence of Savings During Snapshot Queries

	Related Work
	Conclusions and Future Directions
	References

	Load Management and High Availability in the Borealis Distributed Stream Processing Engine
	Introduction
	Borealis System Overview
	Load Distribution in Borealis
	Correlation-Based Operator Distribution
	Resilient Operator Distribution

	Distributed Load Shedding in Borealis
	Solver-Based Advance Planning
	FIT-Based Advance Planning

	High-Availability in Borealis
	Basic HA Models
	Cooperative and Self-configuring HA for Server Clusters

	Conclusions and Future Work
	References

	Knowledge Aquisition and Data Storage in Mobile GeoSensor Networks
	Introduction
	Related Work
	Modeling Spatiotemporal Trajectories in ST Helixes
	Spatiotemporal Similarity Assessment
	Dynamic Time Warping
	Longest Common Subsequence
	Helix Pose Normalization

	Indexing Spatiotemporal Objects
	Lower-Bounding the DTW
	Upper-Bounding the DTW
	Using Upper/Lower-Bounds for Quick Trajectory Pruning

	Distributed Storage of Spatiotemporal Objects and In-Network Data Analysis
	The Distributed Most-Similar Trajectory Retrieval Problem
	Real-Time Object Tracking

	Conclusions
	References

	Continuous Spatiotemporal Trajectory Joins
	Introduction
	Related Work
	Problem Definition
	Evaluation Framework
	Trajectory Approximation and Indexing
	Lower Bound Distance Function

	Query Evaluation
	Initial Formation of the Query Result
	Continuous Query Reevaluation

	Experimental Evaluation
	Experimental Environment
	Experimental Results

	Conclusions
	References

	Data Analysis and Integration
	Data-Centric Visual Sensor Networks for 3D Sensing
	Introduction
	Example Application
	Requirements
	Challenges and Contributions

	SystemModel
	Related Work
	Centralized Image Processing
	Routing in Sensornets
	Abstractions for Wireless Sensornets
	Visual Sensor Networks

	Network Protocols and Coordination
	Data-Directed Localization and Synchronization
	Feature-Oriented Search and Computation
	Structured Routing and Aggregation

	Data Access and Querying
	Space-Time Database
	Image and Video Stream Compression

	Conclusions
	References

	A Vision for Cyberinfrastructure for Coastal Forecasting and Change Analysis
	Introduction
	Overview of the System Being Built

	Advanced Middleware Systems
	GATES: A Grid-Based Middleware for Streaming Data
	Bridging Data Format Differences: Data Virtualization and Automatic Wrapper Generation Approach
	FREERIDE-G: Middleware for Scalable Processing of Remote Datasets

	DataAnalysisServices
	Multi-model Multi-sensor Data Integration Service
	Querying Service
	Mining Services for Heterogeneous and High-Dimensional Environmental Data

	Applications
	Real-Time Coastal Nowcast and Forecasts
	Coastal Erosion Prediction and Analysis

	Conclusions
	References

	OGC® Sensor Web Enablement: Overview and High Level Architecture
	Introduction
	Overview
	The SWE Standards Framework
	Observations and Measurements (O&M)
	Sensor Model Language $(SensorML) ^{2}$
	TransducerML (TML)
	Sensor Observation Service (SOS)
	Sensor Planning Service (SPS)
	Web Notification Service (WNS)

	Sensor Web Standards Harmonization
	IEEE 1451 Transducer Interfaces
	Imaging Sensors

	Current Implementation Efforts
	NASA
	$SensorNet^{®}$
	HMA in Europe
	Northrop Grumman’s PULSENet
	SANY Sensors Anywhere
	52North
	Access to U.S. Hydrologic Data

	Conclusion

	Linking Geosensor Network Data and Ontologies to Support Transportation Modeling
	Introduction
	Related Work
	A Framework for Collecting Dynamic Geosensor Network Data within a Transportation Domain
	A Database Representation for Storing Geosensor Data
	Ontologies That Model Entities in a Transportation Domain

	Linking Geosensor Network Data and Ontologies
	Specification: Identifying Key Elements for Linking
	Parsing: Searching for Linking Elements
	Matching: Finding Equivalence Relations between a Database and Ontology

	A Tab Widget for Linking a Geosensor Database and Ontology
	Structure of the Geosensor Database-Ontology Linking Tab
	Using the Database-Ontology Linking Tab

	Conclusions and Future Work
	References

	Applications
	An Operational Real-Time Ocean Sensor Network in the Gulf of Maine
	Introduction
	The Oceanographic Domain of the Gulf of Maine

	The Ocean Observing System
	GoMOOS Real-Time Buoy Designs
	Local Sensor Networks
	The GoMOOS Buoy Array
	The GoMOOS Optics Program
	The HF Radar Array
	Applications of Neural Network Models to Sensor Array Data

	GoMOOS Operations
	Preliminary Scientific Results from the Sensor Array
	Future Ocean Observing in the GoM: A Five-Year Horizon

	Summary
	References

	Using the Sensor Web to Detect and Monitor the Spread of Vegetation Fires in Southern Africa
	Introduction
	Sensor Web Enablement
	SWE Information Model
	SWE Services Model

	The Advanced Fire Information System
	Hotspot Detection
	Current Sensor Web Architecture

	Results and Discussion
	Hotspot Detection Success Rate
	Extending AFIS Functionality
	Sensor Web Agent Platform

	Conclusions and Future Work
	References

	Peer-to-Peer Shared Ride Systems
	Introduction
	Shared Ride Systems
	Agent-Based Simulation and Shared Ride Applications

	Agents in Peer-to-peer Shared Ride Systems
	Clients
	Hosts in Mass Transit
	Taxis
	Private Cars

	Communication in Peer-to-Peer Shared Ride Systems
	Communication Protocol and Strategies
	The NegotiationMechanism

	Formalization in a Multi-agent Simulation
	Agent Parameters and Behavior
	Client Agents
	Host Agents
	Quality of Trip Planning

	Simulating Shared Rides with Diverse Agents
	Global Optimal Trips Compared with Sub-optimal Trips
	Heterogeneous Clients Under Diverse Communication Strategies
	Geo-routing Quality with Heterogeneous Hosts Using Local Knowledge
	Mobility Models of Agents
	Multi-criteria Optimization

	Conclusions and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

